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a b s t r a c t

The issue of ocean wave analysis and forecasting is today of increasing importance for a variety of scien-
tific and social-economic purposes. In this framework, a number of state-of-the-art research and opera-
tional tools have been developed, mainly based on numerical modeling and advanced statistical
techniques. The performance of the latter is essentially dependant on the utilization of external informa-
tion (remote sensing and in situ measurements). In this work, a combination of ocean wave numerical
models, statistical Kalman filters and data assimilation techniques is used for improvement of simula-
tion-accuracy. More precisely, the systematic deviations of the wave model results are minimized by
the use of Kalman filtering algorithms in areas with continuous flow of observations. Then, the improved
outputs are assimilated by an optimum interpolation scheme, into the forecasting period of the wave
model, in order to extend the assimilation impact in time and space. The case studied concerns four
one-monthly intervals in the North Atlantic Ocean.

� 2012 Elsevier Ltd. All rights reserved.
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1. Introduction

The knowledge of sea state conditions is nowadays crucial for a
number of different applications, since water surfaces are covering
a major part of our planet. Among the issues requiring an accurate
description of ocean conditions are climate change, renewable
energy, marine pollution, searouting, ship safety and commercial
transportation.
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Today, wave analysis and forecasting are mainly based on
numerical atmospheric and ocean wave models, as well as on data
assimilation (DA) systems (see Siddons, 2007; Greenslade and
Young, 2004; Breivik and Reistad, 1994; Greenslade, 2001; Voorr-
ips et al., 1997). The latter use sea state information, in order to
produce analysis and more accurate initial conditions, therefore
resulting in the improvement of the final wave forecasts. The most
common technique in ocean-waves DA systems is the optimum
interpolation (OI) (Abdalla et al., 2005; Greenslade and Young,
2004; Breivik and Reistad, 1994; Lionello et al., 1992). In recent
years, an efficient low-rank approximation to the Kalman filter,
presented by Voorrips et al. (1999), has been also considered as a
DA methodology.

Despite the progress achieved in this field, a serious disadvan-
tage of the assimilation systems remains their limited temporal
and spatial impact to the improvement of the final predictions,
especially that of long forecasting horizons (Emmanouil et al.,
2007). There are two main issues that have to be considered about
ocean waves. The first one is their dependence to atmospheric
winds and to the atmospheric model output quality (something
not controlled by wave models). The second one is the memory
of the system, meaning that any ‘‘wrong’’ information (for any rea-
son e.g. bad quality of wind input) may propagate and cause low
quality of wave forecasts at a long distance. The corrections caused
by the observations and DA disperse quickly because the (poten-
tially biased) forecasted wind forcing is bringing the model back
to its ‘‘old’ state rapidly. As a result, any discrepancies coming from
wind prediction, as well as those related to the wave model evolu-
tion, will force the subsequent wave forecasted fields to diverge.
Furthermore, the limited number of available and quality-con-
trolled wave observations (compared to the surface covered by
oceans and compared to the relevant atmospheric data) contrib-
utes to the above-mentioned problem. In this way, only a short-
time part of the model forecasting results is improved.

For the improvement of atmospheric model results, Kalman fil-
ters – KF – (Kalman, 1960; Kalman and Bucy, 1961; Kalnay, 2002)
have been also employed in combination with observations, as
post processes for the elimination of the systematic bias in atmo-
spheric and wave modeling in several previous works (Evensen,
2003, 2004, Galanis and Anadranistakis, 2002; Galanis et al.,
2006; van der Grij, 2009; Persson, 1990).

The methodology presented by Emmanouil et al. (2010) is a
technique to keep the observation information longer in the simu-
lation procedure by applying a bias correction within the forecast-
ing horizon and is based on the incorporation of such filters into
the wave model integration, instead of using them as an external
post procedure. More precisely, KF are employed in a different
way than the one presented by Voorrips et al. (1999) in order to
provide improved model forecasts, which are utilized as additional
information (‘‘forecasted observations’’) for DA inside the forecast-
ing period and are spatially propagated by the subsequent use of
the OI.

This methodology has been presented in Emmanouil et al.
(2010), in a ‘‘testing’’-preliminary level project and simple cases
were studied in order to examine how the system performs when
only buoy observations are used.

In this work, we focus on the operational use of the above
system in real time applications. The basic developments, as pro-
posed for the KF algorithm are tested under various conditions
and by using different inputs. All available observations (satellite
and in situ) are exploited by the DA scheme towards a detailed
sensitivity study of the system, under complicated weather and
wave conditions, and taking into account the local characteristics
over a wider region: deep and shallow water cases, wind wave
and swell dominated areas, etc. On the other hand, different
time periods and weather conditions are studied, providing
information on potential seasonal dependence of the system
performance.

The paper is organized as follows: a short description of the
wave model, the data assimilation scheme, as well as of the Kal-
man filter algorithms and the necessary modifications for its intro-
duction into the wave model are presented in Section 2. The model
configuration and the application of different techniques are dis-
cussed in Section 3. In Section 4 may be found the presentation
of the results, while the main conclusions are summarized in
Section 5.
2. Numerical models and statistical tools

2.1. Ocean wave model and data assimilation scheme

In this study, the WAM model version of ECMWF (European
Centre for Medium-Range Weather Forecasts) is the one corre-
sponding to the physics as described in Bidlot et al. (2007). This
is a third generation wave model which solves the wave trans-
port equation explicitly without any assumptions on the shape
of the wave spectrum. It represents the physics of the wave evo-
lution in accordance with our knowledge today for the full set of
degrees of freedom of a 2d wave spectrum. The description of
the model is presented in detail in WAMDIG (1988), Komen
et al. (1994), Jansen (2000, 2004), and Bidlot et al. (2007). Details
of the model configuration used in the present work are de-
scribed in Section 3.

The data assimilation scheme for the WAM model was devel-
oped at ECMWF (Lionello et al. (1992)) and it is based on an Opti-
mal Interpolation method, as outlined in Lorenc (1981). In the first
step of the DA procedure, optimum interpolation creates an ana-
lyzed field of significant wave heights. From this field, the full
two-dimensional wave spectrum is retrieved from a first-guess
spectrum, in order to transform the information of a single wave
height measurement into different corrections for the wind sea
and swell parts of the spectrum. The identification of the sea state
as wind sea or swell is performed without further discretization of
the spectral components. Therefore, the two-dimensional spec-
trum is corrected by the introduction of appropriate rescaling fac-
tors to the energy and frequency scales of the wind sea and swell.
Moreover, the local wind speed forcing is updated. The rescaling
factors are derived from duration limited growth relations for the
wind sea; for the swell, it is assumed that the wave steepness is
conserved. A detailed description of the method can be found in
Komen et al. (1994).

2.2. Statistical Kalman filter algorithm

In this paragraph, a short description of the Kalman filter is pre-
sented using the unified notation proposed by Ide et al. (1997).
Such type of filters simulate the evolution in time of an unknown
process (state vector x), whose observational value at time ti is de-
noted by xtðtiÞ and it is combined with a corresponding record yO

i .
The change of x in time and the relation between the observation
and the unknown vectors are described by the following (observa-
tion and system, respectively) equations:

xtðtiÞ ¼ Mi�1½xtðti�1Þ� þ gðti�1Þ; yO
i ¼ Hi½xtðtiÞ� þ ei ð1Þ

The system operator Mi�1, the observational one Hi as well as
the covariance matrices of the Gaussian (non-systematic) errors
gðtiÞ and ei respectively, have to be determined before the applica-
tion of the filter.

The above described Kalman algorithm has been mostly uti-
lized until now in post processing mode for the elimination of



Fig. 2.2.1. The study area (red rectangle-map from Google Earth). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this paper.)
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systematic errors (Galanis et al., 2009). In Emmanouil et al.
(2010), new developments on the use of KF in combination with
the ocean wave DA scheme were proposed: ways of using Kal-
man filters with the available observational timeseries in real
time, different Kalman filters in different areas and optimization
of the calculation of the KF covariance matrices Q and R in an
operational environment, where Q denotes the covariance matrix
of the system equation and R that of the observation equation. In
the present paper, this new KF system is tested under real time-
operational conditions in the North Atlantic Ocean (Fig. 2.2.1), as
part of an integrated ocean wave prediction system. The issue
addressed is the exploitation of the corresponding results (KF-
‘‘forecasted’’ values), in combination with an OI assimilation
scheme so as to improve wave prediction by maximizing the
benefit of both techniques.

The Kalman filter was applied to a single forecasted parameter:
the significant wave height (swh). As proposed by Galanis et al.
(2009), the filter was adapted such that the corresponding swh
bias, now denoted by yO

i , was estimated as a function of the fore-
casted direct model output swhi:

yO
i ðmÞ ¼ a0;iðmÞ þ a1;iðmÞswhiðmÞ þ a2;iðmÞswh2

i ðmÞ þ eiðmÞ; ð2Þ

where the coefficients {a0,i(m)a1,i(m)a2,i(m)} have to be estimated by
the filter. Parameter ei stands for the Gaussian (non systematic) er-
ror of the previous procedure. In this way the state vector of the fil-
ter becomes x(ti,m) = [a0,i(m) a1,i(m) a2,i(m)]T, the bias yO

i (m) is used as
the known parameter, the observation matrix takes the form
Hi(m) = [1 swhi(m) swhi

2(m)] and the system matrix Mi(m) is the
three-dimensional identity. The system and observation equations
(1) take the following initial values:
x ¼ 0; yO
0 ððmÞÞ ¼ e0; Pðt0; mÞ ¼

4 0 0
0 4 0
0 0 4

2
64

3
75;

Qðt0; mÞ ¼ I3; Rðt0; mÞ ¼ 6; ð3Þ

where P denotes the error covariance matrix of the state vector x.
No correlations between different coordinates of the state vector x
(swh) are assumed. The high values for R and the diagonal elements
of P indicate low credibility of the first guess and ensure fast adjust-
ment to new conditions. The obtained KF-estimated bias yO

i is then
used for the correction of the forecasted significant wave height.

The covariance matrices of the filter mentioned above are calcu-
lated from a seven timestep window (as described in detail in
Emmanouil et al. (2010)). The system was trained by taking an
observation every 3 h. If any data was missing, the seven previous
available observations were used for the necessary calculations of
KF.

It is worth noting that the selection of a third order non-linear
function in KF (Eq. (2)) in the present study compensates, at least
partially, the disadvantage of the application of such linear filters
in (non-linear) wave models.

3. Model configuration and applications

The wave model WAM was integrated in this work over a global
domain, with horizontal resolution of 0.5� � 0.5�. The main target
was to test the proposed methodology in a time-efficient configu-
ration. Analogous studies performed for atmospheric models,
showed that the successful use of KF do not really depend on the
horizontal resolution of the main model (Galanis et al., 2006).
The wave spectrum was discretized with 30 frequencies and 24



Fig. 3.1. Buoys used (with black stars) and bathymetry (contour lines).
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directions. The lowest frequency was defined to 0.0417 Hz, while
the propagation and the integration time step were set to 300 s.
The timestep of DA was set to 6 h. The model ran in deep water
mode with no refraction. It is important to underline here that
all the versions were ran with the same parameters. The unre-
solved bathymetry scheme was switched off while the sea ice mask
was taken from the GFS database on a monthly base. The necessary
atmospheric input (10 m wind speed and direction forecasts) was
obtained from NCEP/GFS global model (horizontal grid resolution
0.5� � 0.5�) at a time step of 6 h. It worth to be noted that NCEP/
GFS forecasts have been reported in some cases, to overestimate
surface winds (e.g. Wave Forecast Verification Project produced
for WMO-IOC Joint Technical Commission for Oceanography and
Marine Meteorology). On the other hand, NCEP is one of the most
reliable environmental operational centers globally, providing free
real time weather forecasts.

Even though the area of interest was over the North Atlantic
(Fig. 2.2.1), an open sea area, the model was set to cover the whole
North and South Atlantic; this choice ensures the right representa-
tion of long waves (swell) and high availability of observational
data. Moreover, weather and sea conditions in the chosen domain
cover a wide range of cases and, by this way, a better evaluation
may be performed. Finally, the chosen area lies between two of
the most developed continents of the world (Europe and North
America), a fact that increases the interest on sea conditions for
transport, scientific studies and other applications.

The sources of the observational data used were:

1. The RA2 instrument onboard satellite Envisat (ESA, 2007)
from where the data were captured in near real time (with
a 3–5 h of delay).
Table 3.1
Experimental versions of WAM. Symbol � means that use of the relevant scheme-data wa

Data assimilation Kalman filters Calculation of matrices Q an

Continuous-dynamic

WAM0
WAM1 � � �
WAM2 � �
WAM3 � � �
WAM4 � �
WAM5 � � �
WAM6 � �
WAM7 �
2. The altimeter instrument of the NASA/CNES satellite Jason-1
(Picot et al., 2003) and the data were also captured in near
real time.

3. Buoys of the National Data Buoy Center (NDBC) network of
NOAA, in real time, which are indicated in Fig. 3.1.

The above data were not quality controlled, nor calibrated
(altimeter data) since they were used in real time. Then, they were
inserted to the DA scheme as individual along track observations. It
has been shown (Durrant et al., 2009; Abdalla et al., 2011) that Ja-
son-1 data are noisier than other altimeter data set such as ENVI-
SAT. Operational centers, like ECMWF, have accounted for that by
increasing the observation error associated to Jason-1 (Abdalla
et al., 2005). In our experiments, the use of Jason-1 data has not
led to elevated observation error.

Eight different experimental versions of WAM were employed,
as shown in Table 3.1, which differ in the DA and KF schemes used,
as well as in the corresponding wave data input:

1. The first one (referred from now on as WAM0) does not use
any assimilation system.

2. In the second version (WAM1), two different observation
types were assimilated:
i. The buoy observations and Envisat RA2 records within

the assimilation window.
ii. Improved-filtered forecasts of WAM, obtained by Kal-

man filters, which are used as ‘‘forecasted values’’,
assimilated inside the forecasting period by the stan-
dard OI assimilation system, as shown in Fig. 3.2. In
these Kalman-filtered values, an important part of the
systematic error has been removed, while their impact
s made.

d R of the Kalman filters Input for data assimilation scheme

Semi-continuous Buoys Envisat RA2 data Jason1 data

� �
� � �

� � �
� � � �

� �
� � �

� � �



Observations

Initial and lateral 
boundary conditions 

Output and post processing

Visualization Statistical 
evaluation

End of integration (T0+n t) 

For t1=[Tstart,T0] 

For t2=(T0,Tend] 

End of Data Assimilation window (T0) 

Wave model integration 
(time step t1)

Kalman filters  
at time step t1

Data assimilation-
analysis fields

Kalman filters  
(for the production of “forecasted” observations)  

at time step t2

Wave model integration 
(time step t2)

Data assimilation (of observations) 
at time step t1

Data assimilation 
(of “forecasted” observations) 

at time step t2

End of integration (Tend) 

WAM-KF system

Fig. 3.2. Flowchart of the new wave analysis and forecasting platform.
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is extended to a greater area and to the entire forecast-
ing period. However, it should be noted that Kalman
filters can be used only in cases with a continuous flow
of data, like the buoy data in this study.
The Kalman filter covariance matrices Q and R, of the
system and the observation equation respectively are
calculated in a continuous way by the last seven values
of n and e at Eq. (1) (which are available at 3-h inter-
vals in the present study). This 7-step period resulted
as the optimum one after a series of relevant tests
(Galanis et al., 2006). On the other hand, this choice
allows fast adjustment to possible changes. The values
used for this estimation are either observations (into
the assimilation window), or ‘‘forecasted values’’ from
the Kalman filter (into the forecasting period). The pur-
pose is to explore the advantages obtained by the con-
tinuous-dynamical calculation of the covariance
matrices and, therefore, to study the adjustment of
the filter to the new conditions appearing in the fore-
casting period.
3. The third test (WAM2) is similar to WAM1, using again
‘‘forecasted values’’ (produced by KF) as input to the OI
– assimilation scheme, though having the Kalman covari-
ance matrices (Q and R) updated in a semi-constant way:
only when observations are available (inside the assimi-
lation window). During the forecasting period, mean val-
ues of Q and R are used, which is calculated by the last
seven observations. This value is changing at each fore-
casting cycle. In this way, the most recent observations
are employed, increasing the accuracy of the filter.The
data used by DA in this test are the same with WAM1
(Envisat RA2 and buoy measurements).

4. WAM3 also uses KF-forecasted values as in WAM1. The
difference in this case concerns the data used by DA
inside the assimilation window, which comes from Envi-
sat RA2, Jason-1 and buoys. The KF covariance matrices
are estimated following the ‘‘continuous’’ way.

5. WAM4 is similar to WAM2, but the data used by DA
inside the assimilation window comes from Envisat
RA2, Jason-1 and buoys, as in WAM3. The KF covariance
matrices are estimated following the ‘‘semi-continuous’’
way.

6. WAM5 has the same characteristics with WAM1, with
the assimilated data coming only from Jason-1 and
buoys. The KF covariance matrices are estimated follow-
ing the ‘‘continuous’’ way.

7. WAM6 is similar to WAM2, using observations from
Jason-1 and buoys, as in WAM5. The KF covariance
matrices are estimated following the ‘‘semi-continuous’’
way.

8. Finally, WAM7 employs only the DA system described in
Section 2 (Lionello et al., 1992), without KF, serving by
this way as a reference platform. This scheme is widely
used from operational centers and meteorological ser-
vices worldwide and is based on an OI technique. In this
case, the DA scheme assimilates Envisat RA2, Jason-1 and
buoy observations, available before the beginning of the
forecasting period (analysis time) in order to study the
differences with the proposed system.

The testing period for WAM0-4 consists of four one-month
intervals, one in each season (November 2007, February 2008,
April 2008 and June 2008). In this way, the performance of the pro-
posed system is evaluated under different atmospheric-synoptic
conditions. WAM5 and 6 were executed for June 2008, in order
to study the influence of assimilating data from satellites with dif-
ferent characteristics (e.g. repetition time, resolution) in the accu-
racy of the corresponding sea state forecasts. Finally, WAM7 was
executed for November 2007 so to compare the classical DA meth-
odology (OI) with the new system (WAM1-4), and not for a de-
tailed study of an already tested ocean wave DA system (e.g.
Abdalla et al., 2005; Breivik and Reistad, 1994).

Each monthly run was initialized (i.e. cold start, no swell) ten
days earlier in order to better reproduce all the information from
long traveling swell waves which might affect our study area.
The above mentioned experiments were performed in real-time
conditions. In each forecasting cycle, the first 24 h were used as
the DA window for providing the necessary analysis fields and then
a 48-h forecasting period was started. The forecasted results were
evaluated against buoy and satellite measurements which were
not used by DA. The comparison to the observations was done with
the nearest model grid point, at the closer time (maximum: 1.5 h of
time difference) for each along track observation.

This verification procedure concerns the forecast accuracy and
the assimilation impact in time and space. The statistical analysis
was based on the following parameters:
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1. Bias of forecasted values:
Table 4
Compar

Auto

Bias

RMS

N.Bia

Stan
Bias ¼ 1
k
�
Xk

i¼1

ðforðiÞ � obsðiÞÞ ð4Þ
Here obs(i) denotes the recorded (observed) value at time i, for(i) the
respected forecast and k the size of the sample.

2. Normalized Bias (N.Bias):
N:Bias ¼ 1
k

Xk

i¼1

j forðiÞ � obsðiÞ
obsðiÞ j ð5Þ
where | | stands for the absolute value, revealing the normalized
divergence of the forecasts as a proportion of the observations.

3. Root Mean Square Error (RMSE) and standard deviation
(St_Dev) of the error, two classical variation and divergence
measures respectively:
RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
k
�
Xk

i¼1

ðforðiÞ � obsðiÞÞ2
vuut ; St Dev

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
k
�
Xk

i¼1

ððforðiÞ � obsðiÞÞ � BiasÞ2
vuut ð6Þ
4. Results and discussion

As it has been mentioned in previous sections, the main purpose
of this study is to propose a new technique for the extension of the
ocean-wave assimilation benefits in time and space, addressing, in
this way, one of the main problems of the classical DA schemes:
the limited influence in the wave forecasts (Emmanouil et al.,
2007). In Emmanouil et al. (2010), simple cases were studied to
check the system (KF and DA) performance with only buoy obser-
vations. Here, we use operationally the new system in real time
applications, with all available observations (satellite and in situ)
under complicated weather and wave conditions.

A main advantage of the proposed methodology is the correc-
tion of the bias between direct model forecasts and buoy measure-
ments even in cases where such discrepancies do not have a
constant behavior, since Kalman filters can be dynamically in-
volved in the wave integration (Galanis et al., 2009; Emmanouil
et al., 2010).

The study performed concerns the following main issues:

4.1. Comparison with the existing wave simulation systems

As a first step in the evaluation procedure of this new integrated
system, we compare the proposed methodology as applied in
experiments WAM1-4 with the classical DA scheme (OI) of WAM
(WAM7) and WAM without DA (WAM0). The results show that
KF combined with classical DA scheme in the forecasting period
improves the accuracy of the wave model in all the experimental
.1
ison with satellite data from Envisat-RA2 (110,000 measurements) and Jason-1 (26

mn (11/2007) 0–24 Forecasting hours WAM0 W

Envisat-RA2 0.214 0
Jason-1 0.401 0

E Envisat-RA2 0.623 0
Jason-1 0.838 0

s Envisat-RA2 0.200 0
Jason-1 0.182 0

dard deviation Envisat-RA2 0.585 0
Jason-1 0.735 0
versions (Table 4.1). More precisely, the systematic bias is signifi-
cantly decreased thanks to KF at the observation areas. This bias
is mainly a result of the deviations of the relevant forecasted atmo-
spheric input, limitations of the physical parameterizations and the
numerical scheme used. After this, the DA scheme spreads the im-
proved forecasts to neighboring areas by using OI and, by this way,
contributes to the reduction of the deviation of the model results in
comparison with the relevant measurements. In contrast, the clas-
sical DA scheme (WAM7), although it contributes to the bias
reduction, does not reduce the scatter and the deviation indexes
(RMSE and standard deviation). Such a behavior may be attributed
to the presence of a systematic bias in the model or to the use of
Jason satellite data which are associated with the problems men-
tioned in the previous section.

The improvement of the model results by the use of Kalman fil-
ters affected a greater area due to the combination with DA. The
wave model forecasted fields were modified in comparison with
the standard version of WAM (WAM0), as well as with WAM7, as
shown in Figs. 4.1–4.3, where a short testing period, concerning
March 2008, is presented (Emmanouil, 2010). Here, we can see that
in experiment WAM7 (classical DA with data from two satellites
and buoys), after 30 h of forecast, there is very minor difference
with WAM0 (no DA). On the other hand, by the use of KF, the ocean
waves forecasted fields are still affected. The comparison that fol-
lows proves that the new results are more accurate.

The above conclusions are clearer if we look at the absolute dif-
ferences between the tests performed, as shown in Figs. 4.4–4.8.
The differences between WAM0 and WAM7 after 30 h of forecast-
ing, are trivial (Fig. 4.4). In the proposed WAM versions which used
data from one satellite and buoys (WAM1 and 2) combined with
KF, the differences with WAM0 reach 0.5 m and are spread to the
whole study area (Figs. 4.5 and 4.6). The same magnitude of differ-
ences hold for the comparison with WAM7. Finally, in the tests,
where two satellites were used (WAM3-4), the differences with
WAM0 and WAM7 are higher reaching even the level of 1 m
(Figs. 4.7 and 4.8).

The problems of positive anomaly near the equator are mainly
due to unexpected integration/simulation values near the bound-
aries of the area of interest at the dates presented, reminding about
the ‘‘dangers’’ of boundary conditions. A detailed examination of
other simulation dates, in the same area, showed much smaller dif-
ferences (0.1–0.25 m). Taking into account that long swell travels
at about 20 m/s, after 30 h of integration, these anomalies cannot
affect the results, in any way, in the study area.

The improvement of the statistics concerns all the proposed
versions of WAM. It is worth noting that better results compared
with the classical DA scheme (WAM7) have been achieved even
with the assimilation of data from only one satellite (WAM1-2).
However, the optimum performance came from WAM4, where
the calculation of the Kalman covariance matrices is performed
only from real measurements and a mean value – changing in each
forecasting cycle – is used during the forecasting period (semi-con-
,000 measurements) for the autumn period and the first 24 h of forecasting horizon.

AM1 WAM2 WAM3 WAM4 WAM7

.038 0.047 �0.012 �0.018 0.082

.124 0.126 0.077 0.003 0.163

.565 0.584 0.562 0.502 0.632

.801 0.791 0.766 0.477 0.831

.171 0.165 0.156 0.142 0.190

.160 0.158 0.150 0.092 0.170

.564 0.582 0.562 0.502 0.627

.791 0.781 0.762 0.477 0.815



Fig. 4.1. Significant wave height and direction fields at 06UTC of 23/03/2008, from WAM0 (a) and WAM7 (b).

Fig. 4.2. Significant wave height and direction fields at 06UTC of 23/03/2008, from WAM1 (a) and WAM2 (b).

Fig. 4.3. Significant wave height and direction fields at 06UTC of 23/03/2008, from WAM3 (a) and WAM4 (b).
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Fig. 4.4. Absolute difference in significant wave height between WAM0 and WAM7
after 30 h of forecast (23/03/2008, 06UTC, from the forecasting cycle of 22/03/2008,
00UTC).

18 G. Emmanouil et al. / Ocean Modelling 59–60 (2012) 11–23
stant way). Moreover, the use of additional observations further
improves the performance of the system. In conclusion, going from
continuous to semi-continuous update did not seem to result in
Fig. 4.5. Absolute difference in significant wave height between: (a) WAM0

Fig. 4.6. Absolute difference in significant wave height between: (a) WAM0
large improvements from WAM2 with respect to WAM1. Neither
did adding Jason-1 when comparing WAM1 to WAM3. But the
two changes together did have an important impact! This might
mean that there is a threshold in the amount of data needed to re-
move the systematic error in the model before it pops back up and
influences the dynamic of the continuous update of the filter.

4.2. Extention of the impact in time

The proposed methodology extended in time the effects of the
DA scheme. This is due to the fact that the use of Kalman filters im-
proved the model results at areas with available measurements by
reducing the systematic bias. The subsequent use of DA into the
forecasting period extended this ‘‘improvement’’ in the neighbor-
hood where it is expected to have similar wave behavior. The ob-
tained benefits become obvious in Tables 4.2–4.4 where the
improvement of the results of the new system is lasting even more
than 24 h of forecasting. By this way, an important issue of the
ocean waves DA schemes is, at least partially, confronted.

4.3. Seasonal comparison between the proposed methodologies

The better results come from WAM4 (data from two satellites
and semi-constant calculation of KF covariance matrices). When
and WAM1 and (b) WAM7 and WAM1 at the same time with Fig. 4.4.

and WAM2 and (b) WAM7 and WAM2 at the same time with Fig. 4.4.



Fig. 4.7. Absolute difference in significant wave height between: (a) WAM0 and WAM3 and (b) WAM7 and WAM3 at the same time with Fig. 4.4.

Fig. 4.8. Absolute difference in significant wave height between: (a) WAM0 and WAM4 and (b) WAM7 and WAM4 at the same time with Fig. 4.4.

Table 4.2
Comparison with satellite data from Envisat-RA2 and Jason-1 for the autumn period and the second 24 h of forecasting horizon.

Automn (11/2007) 24–48 Forecasting hours WAM0 WAM1 WAM2 WAM3 WAM4

Bias Envisat-RA2 0.219 0.068 0.069 0.029 �0.005
Jason-1 0.366 0.095 0.095 0.065 �0.0005

RMSE Envisat-RA2 0.736 0.700 0.700 0.690 0.580
Jason-1 0.966 0.934 0.933 0.929 0.508

N.Bias Envisat-RA2 0.217 0.192 0.192 0.185 0.155
Jason-1 0.199 0.183 0.183 0.180 0.097

Standard deviation Envisat-RA2 0.703 0.697 0.697 0.690 0.580
Jason-1 0.872 0.929 0.928 0.926 0.507
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using Envisat data as reference, WAM1 and 2 did not lead to
improved standard deviation in winter and spring, when in the
case of comparing with Jason-1, the standard deviation is improved
only in WAM4, with the exception of the summer period. These
exceptions from the general positive impact, and especially the
increase of standard deviation, are a common fact in the use of
DA schemes. It may be attributed to the fact that non-continuous
information is incorporated in the homogenous smooth model
fields, leading to higher variance values. Moreover, we have to re-
mind that the assimilation scheme relies on reshaping the wave
model spectrabased on very simplistic assumptions. When the
sea state is complicated, this reshaping is far from optimal and
has a tendency to generate undesired noise. The most significant
differences between model and measurements were observed dur-
ing the winter experiment and secondly in autumn, spring and
summer. On the other hand, the best improvement in percentage
was obtained in winter. In this period, the atmospheric conditions
are characterized by the prevalence of well organized low pressure
systems which are simulated sufficiently well by the numerical
models and the divergences are mainly due to the wave model dis-
crepancies. In these cases, which lead to systematic deviation, the
use of KF improves significantly the results.

During the mid periods (spring, autumn), the atmospheric
instability is more important, resulting in lower accuracy of the



Table 4.3
Comparison with satellite data from Envisat-RA2 for the winter, spring and summer period (total of 525,000 measurements).

Forecasting hours WAM0 WAM1 WAM2 WAM3 WAM4

0–24h 24–48h 0–24h 24–48h 0–24h 24–48h 0–24h 24–48h 0–24h 24–48h

Bias Winter (02/2008) 0.262 0.276 0.105 0.108 0.079 0.114 0.027 0.080 0.001 0.009
Spring (04/2008) 0.189 0.203 0.028 0.067 0.038 0.067 �0.018 0.031 �0.034 �0.022
Summer (06/2008) 0.175 0.178 0.002 0.009 0.002 0.009 �0.023 �0.010 �0.023 �0.009

RMSE Winter (02/2008) 0.692 0.789 0.686 0.763 0.626 0.748 0.580 0.735 0.541 0.625
Spring (04/2008) 0.600 0.706 0.580 0.668 0.578 0.668 0.543 0.657 0.511 0.567
Summer (06/2008) 0.545 0.616 0.504 0.553 0.504 0.554 0.476 0.548 0.476 0.548

N.Bias Winter (02/2008) 0.202 0.219 0.176 0.202 0.162 0.188 0.147 0.179 0.142 0.157
Spring (04/2008) 0.190 0.207 0.187 0.191 0.165 0.191 0.151 0.182 0.145 0.160
Summer (06/2008) 0.193 0.207 0.171 0.194 0.171 0.194 0.159 0.188 0.159 0.188

Standard deviation Winter (02/2008) 0.640 0.739 0.677 0.806 0.621 0.739 0.580 0.730 0.541 0.625
Spring (04/2008) 0.570 0.634 0.599 0.664 0.576 0.664 0.543 0.656 0.509 0.566
Summer (06/2008) 0.516 0.590 0.504 0.573 0.504 0.573 0.476 0.558 0.476 0.558

Table 4.4
Comparison with satellite data from Jason-1 for the winter, spring and summer period (total of 82,000 measurements).

Forecasting hours WAM0 WAM1 WAM2 WAM3 WAM4

0–24h 24–48h 0–24h 24–48h 0–24h 24–48h 0–24h 24–48h 0–24h 24–48h

Bias Winter (02/2008) 0.506 0.448 0.217 0.238 0.214 0.238 0.142 0.203 0.028 0.025
Spring (04/2008) 0.353 0.346 0.154 0.117 0.125 0.117 0.073 0.084 0.003 0.0005
Summer (06/2008) 0.430 0.426 0.064 0.046 0.063 0.046 0.032 0.031 0.032 0.031

RMSE Winter (02/2008) 0.971 1.063 0.883 1.041 0.898 1.040 0.842 1.031 0.494 0.531
Spring (04/2008) 0.833 1.007 0.812 0.945 0.809 0.945 0.774 0.937 0.484 0.520
Summer (06/2008) 0.859 0.990 0.769 0.940 0.769 0.940 0.738 0.934 0.738 0.934

N.Bias Winter (02/2008) 0.201 0.208 0.162 0.192 0.163 0.192 0.149 0.188 0.091 0.096
Spring (04/2008) 0.172 0.187 0.159 0.185 0.158 0.185 0.147 0.180 0.093 0.098
Summer (06/2008) 0.183 0.203 0.161 0.193 0.161 0.193 0.153 0.190 0.153 0.190

Standard deviation Winter(02/2008) 0.829 0.878 0.856 1.013 0.872 1.012 0.830 1.011 0.493 0.530
Spring (04/2008) 0.732 0.838 0.818 0.938 0.799 0.938 0.770 0.933 0.484 0.520
Summer (06/2008) 0.744 0.894 0.737 0.909 0.737 0.909 0.708 0.884 0.708 0.884

Table 4.5
Comparison with satellite data (Envisat, 290,000 measurements, and Jason, 32000
measurements) for the summer period, for the first and the second 24 h forecasting
horizon.

Summer (06/2008) Forecasting
horizon

Comparison
to

WAM5 WAM6

Bias (m) 0–24 h Envisat �0.026 �0.026
Jason 0.026 0.026

24–48 h Envisat �0.012 �0.012
Jason 0.029 0.029

RMSE (m) 0–24 h Envisat 0.485 0.485
Jason 0.744 0.744

24–48 h Envisat 0.549 0.550
Jason 0.936 0.936

N.Bias 0–24 h Envisat 0.163 0.163
Jason 0.155 0.155

24–48 h Envisat 0.189 0.189
Jason 0.191 0.191

Standard deviation
(m)

0–24 h Envisat 0.484 0.484
Jason 0.713 0.713

24–48 h Envisat 0.559 0.560
Jason 0.896 0.896
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atmospheric model results. The resulting deviations at the wave
model results are often non-systematic and the impact of the KF
application is restricted but still important. Finally, in the summer
time, there are no significant changes in the atmospheric fields and
the results of the models are close with each other and to the rel-
evant measurements.
4.4. Satellite comparison

The characteristics of the satellite whose data are used for input
in the DA scheme affect the results of the new wave system. The
comparison between WAM1-2, where only Envisat data were used,
and WAM5-6, where the data come from Jason-1, showed that bet-
ter results were achieved in the second case (Tables 4.3–4.5). This
leads to the conclusion that, in wave simulations at a relatively low
model resolution, the most important factor is the number of mea-
surements and the shorter repetition cycle. It should be mentioned
that the observations were collocated with the nearest model grid
point.

4.5. Evaluation against buoys

The comparison of the proposed system with buoy measure-
ments (for all the testing period covered in each experimental ver-
sion of WAM) reconfirms the already mentioned conclusions
(Fig. 4.9):

� The new system gives better results in all cases when com-
pared with WAM0 and WAM7 (standard DA scheme).

� The optimum results come when we use data from Jason-1.
In contrast, when comparing with satellite data, the best
results are achieved when we used data from both satellites.

� Between the two ways of calculating the covariance matri-
ces, the semi-constant way leads to more accurate outputs.

� Finally, it is obvious that the new system achieves longer
durations of improvement compared with the classical DA
scheme.



Fig. 4.9a. Comparison [bias (m), RMSE (m), N.Bias, standard deviation (m)] with buoy measurements (240 records for each buoy and each month of comparison) for 12 and
24 h of forecasting horizon for all the testing period available in each case.
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We should mention here that the results are for different
months on the same figure and they should not be compared.
One could compare WAM0-4 which refer to the same period, as
well as WAM5-6.

The above comparisons are focusing on swh since this is the
parameter that the proposed methodology aims to correct. In gen-
eral, one of the main problems in wave data assimilation based on
wave height observations is to find the optimal way to distribute
the update in the spectral domain. Therefore, the utilization of
more integrated wave parameters would be enlightening but it is
out of the scope of the present work.
5. Conclusions

The results of ocean wave forecasting systems are improved by
data assimilation for only a limited time period. This is mainly due
to the fact that biases from the atmospheric input (since forecast
winds have forecast error due to the intrinsic nature of weather
forecasting) or the dynamics of the wave models lead to the reap-
pearance of the initially emerged discrepancies as soon as the
external information is no longer available.

In this study, a new technique has been tested in an operational
configuration in order to reduce the consequences of this draw-
back. The proposed approach produces improved model forecasts,
obtained by the use of Kalman filters as part of the wave system.
Afterwards, these ‘‘forecasted observations’’ are utilized by the
DA scheme, inside the forecasting period. This technique leads to
the reduction of the systematic error, spreading at the same time
this positive impact over a greater area, compared to the one with
only observations. On the other hand, the use of the Kalman filter
as a part of the wave model guarantees the compatibility of the rel-
evant outputs with the physics of the simulated wave system. The
proposed integrated system also improves the forecasting accuracy
in time since the obtained impact is extended even until the end of
the forecasting period, while by using the classical DA scheme it is
limited just to the first 24 h at maximum. Different alternatives for
estimating the covariance matrices of the Kalman filter are also ex-
plored. The optimum approach proved to be the calculation of a
mean value for each forecasting cycle, based on the most recent
observations, in each area of Kalman filters application. However,
better results than the classical DA were achieved, even when
the calculation was made by a continuous-dynamic way, during
the assimilation window and the forecasting period.

The statistics in the verification of the proposed system become
better when the number of satellites providing data for assimila-
tion is increased. On the other hand, when only one satellite is
used, the role of the number of measurements and of the repetition
time proves to be more important than the resolution of the sup-
plied data. Finally, the most significant divergences between wave



Fig. 4.9b. Comparison [bias (m), RMSE (m), N.Bias, standard deviation (m)] with buoy measurements (240 records for each buoy and each month of comparison) for 36 and
48 h of forecasting horizon for all the testing period available in each case.
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model results and observations appear during winter time. How-
ever, the use of the proposed system is significantly improving
the final results.

It is worth noting that the proposed methodology can be suc-
cessfully applied only in the presence of continuous time series
of observational data (e.g. buoys), which is not always the case,
especially in the open ocean. However, such type of data is avail-
able for areas of increased interest, like big harbors, touristic
coasts, commercial areas, etc. In these cases, the proposed tech-
nique can contribute in the improvement of the wave forecasts
in a considerable way.
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