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a b s t r a c t

The rising demand of energy consumption in isolated locations such as in islands leads in the expansion
of on and off-shore wind farms. The optimization of the structural design of wind turbines for such
applications requires a risk analysis that is made by using the definition of return periods of extreme
events with respect to the lifespan of wind turbines. This work is focusing on the estimation and the
analysis of extreme wind speeds by means of the corresponding return periods based on two methods:
the Peaks Over Threshold and the Annual Maxima. In addition, different methodologies and tools are
tested in order to achieve more accurate results. The data used for the application are both: observations
(measurements from Met Stations located on Greek islands) and modeling (a 10-year model hindcast
database). The sensitivity test results were used to adjust the methodologies and make 50-year extreme
wind speed maps for Northeast Mediterranean (focusing on the sea and the islands). The outcome should
be used as a guide for on and off-shore wind energy applications and other construction activities.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

In the structural design of wind turbines, probabilistic
approaches of risk assessment are adopted in order to optimize
the constructions in terms of profit and durability and avoid time
and cost overruns that can compromise the economic viability of
the project. To this end different approaches are used for esti-
mating conditions that contribute to or form potential threats for
wind turbines such as extreme wind speed. Such conditions can be
evaluated through risk analysis, a methodology that combines the
magnitude and the likelihood of occurrence of an extreme event.

In this direction, risk can be expressed through the concept of
return period that is a statistical estimator for extreme phenomena
reoccurrence based on data of shorter range. Although, there are
different approaches proposed for the estimation of the magnitude
and reoccurrence interval of events, Annual Maxima and Peaks
Over Threshold methods (Coles, 2001) meet great acceptance for
their effectiveness. Cook (1985) suggested that for Annual Maxima
method, extreme wind speed is often well represented by Gumbel
distribution. The same author (1982) used the dynamic pressure to
achieve a faster convergence and better distribution fitting. A more
recent study was held by Larsén et al. (2011) where an extreme
wind speed atlas is created based on the principles of Generalized
Extreme Value (GEV) theory and the Annual Maxima (AM)
method. Peaks Over Threshold (POT) methodology is employed for
studies based on smaller time series and the use of exponential is
supported (Abild et al., 1992). As in the first case, the wind speed
square is found to fit better, especially in areas with low wind
speeds and in cases where the wind speed distribution is not
skewed enough for an exponential quick convergence to the dis-
tribution tail (Caires and Sterl, 2004; Galambos, 1987; Cook, 1982).
These extreme value analysis methods are also used to more tar-
geted studies of extremes based on similar characteristics such as
the year season or the direction (Cook, 1982). The necessity for
bigger datasets that do not violate the principles of Extreme Value
(EV) theory led to the introduction of other methodologies such as
the Method of Independent Storms (MIS) (Harris, 1998) and the EV
theory based on the largest annual events (Smith, 1986). At the
same time different approaches are proposed by Lopatoukhin et al.
(2000) for the estimation of extreme wind wave heights such us
the Initial Distribution Method (IDM). Breivik et al. (2014) studied
wind and wave extremes using large ensembles and computed a
non-parametric Direct Return Estimate (DRE) from the tail of the
fitted distribution function. This was used for the estimation of the
100-year marine wind speed over the Globe.

The purpose of this work is to study ways of estimating the
likelihood of occurrence of extreme wind speed events and to
apply them over the area of Greece. More specifically, different
methods and tools are applied over multiple datasets and the
convergence (or not) of the results is further discussed. Through
this procedure the uncertainties on the estimation of extreme
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winds are presented and the appropriateness of the methods/tools
used is studied.

Towards this direction, the two approaches mentioned above
and used are the Peaks Over Threshold (POT) and the Annual
Maxima method (AM) (Palutikof et al., 1999; Larsén et al., 2011).
The data employed for the application consists of both measure-
ments from nine different stations and modeled time series. The
selected area is characterized by a complex land–water distribu-
tion and the existence of several islands (smaller or bigger) where
wind energy production is considerable. The reason for this
selection is the local climatic and geographic characteristics. More
specifically, an almost constant Boundary Layer (BL) depth
(�300 m) is observed over the sea during day and night. This BL
depth can change dramatically from night to day over islands that
can lead to strong vertical wind components (over the islands)
during day-time especially on the warmer period of the year. In
addition, close to laminar flow conditions are observed near the
water surface while more turbulent over the land and downwind.
Moreover, strong dominant effects can take place at the wake part
of the islands and at the same time wind shading can be the case
in areas surrounded by island clusters.

The modeled time series are extracted from a database created
by the Atmospheric Modeling and Weather Forecasting Group
(AM&WFG) of the University of Athens within the framework of
Marina Renewable Integrated Application Platform project (Kallos
et al., 2012) (MARINA – http://forecast.uoa.gr/proj_marina.php).
The advantage of the use of the database is the fact that a wide
area is represented and wind speed is recorded in five levels
within the boundary layer.
2. Materials and methods

Two of the most known methodologies to estimate return
periods, are the Block Maxima and the Peaks Over Threshold
method. A quick description of them is provided below.

2.1. Block (Annual) Maxima method

The Block Maxima method uses the GEV theory (Jenkinson,
1955). For this application the time series are divided in same-size
blocks and the maximum value of each block is used to create the
dataset for the application.

The choice of the block size is of major importance since a very
small can lead to overestimation and increased bias. On the other
hand, very large blocks will lead to smaller datasets, large varia-
bility (Coles, 2001) and rather unreliable estimation. These reasons
led to the use of annual blocks (Annual Maxima) because shorter
periods may violate the principles of the GEV theory (Coles, 2001).
The sample created by selecting the annual maximum values, is
used to fit a distribution that belongs to the GEV family.

It is widely accepted that wind speed is well described by the
Weibull distribution (Hennessey, 1977), while the extremes (AM)
are often approached by the first type of GEV (Cook, 1985). The
later, combined with the fact that Gumbel's Probability Density
Function:

F xð Þ ¼ 1
α
e� z� e� z ð2:1:1Þ

where z¼ x�β
α , β¼ location parameter, α¼scale parameter, requires

the estimation of only two parameters, led to this selection.
The estimation of the parameters of the fitting distribution is

based on two methods. The first one is the Maximum Likelihood
(ML) Method (Cramér, 1946; Hazewinkel, 2001) and the second is
the Method of Moments (MoM) (Cramér, 1946; Kendall and Stuart,
1987). Using the ML Method, the location (β) and the scale (α)
parameter can be estimated through the numerical solution of the
following equations simultaneously:
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where x1, ..., xn is a random sample, ~x is the sample mean and α, β
the scale and location parameter respectively.

Using the MoM, the location (β) and the scale (α) parameters
can be calculated by:

α¼ sU
ffiffiffi
6

p

π
; β¼ ~x�0:57721Ua ð2:1:3Þ

where ~x and s are the sample mean and standard deviation,
respectively.

In order to verify the appropriateness of the distribution
selection, the raw data under study (modeled or observed) is
compared with the corresponding values of the theoretical dis-
tribution. There are different approaches either graphical or ana-
lytical such as Probability plots (P–P plots), Quantile plots (Q–Q
plots) (Coles, 2001) and the Kolmogorov–Smirnov test (Marsaglia
et al., 2003).

The next step is to estimate extreme wind speed (UT) with the
preferred return period (T) through the relation F(UT)¼1 – (1/T)
leading to the following results (Palutikof et al., 1999):
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where α, β and k are the scale, location and shape parameter
respectively.

The extreme wind speed uncertainty is normally distributed
and expressed through the 95% confidence interval that equals to

1.96 �σ(UT), where σ UTð Þ ¼ π∙α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ1:14kT þ1:10kT
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q
, n is the number of

maxima, kT ¼
ffiffi
6

p
lnT�γΕð Þ
π and γΕ is the Euler's constant.

For the successful implementation with respect to the princi-
ples of Extreme Value theory, events should be independent and
identically distributed (Palutikof et al., 1999). It is also assumed
that a stationary extreme wind speed climate characterizes the
study area. The main disadvantage regarding the AM method is
that only one value per year is used. This reduces the amount of
the analyzed data significantly. For this reason, the original time
series must be large enough. Cook (1985) suggests the use of 20
years of data for reliable results, and argues that the method
cannot be applied to time series of less than 10 years.

2.2. Peaks Over Threshold method

To overcome the above mentioned shortcomings, a second
approach for the estimation of return periods has been used
through the Peaks Over Threshold method that is based on the
Generalized Pareto Distribution (GPD) that is used to estimate the
values exceeding a threshold.

The great advantage of POT method is the utilization of more
data for the application that can be achieved also by smaller time
series. For this reason, in contrast to AM, a period of 5–6 years is
statistically adequate (Coles and Walshaw, 1994).

The first step for creating the dataset is to apply a high
threshold and formwind speed clusters above it. The problem that
arises with the selection of the threshold is similar to the block
selection for the Block Maxima. Low thresholds may lead to vio-
lation of the asymptotic behavior of the distribution, while high
will create fewer exceedances and will lead to an increase of var-
iance. Therefore, the threshold should be high enough so as to
converge to GPD and avoid the coexistence of different

http://forecast.uoa.gr/proj_marina.php


Table 1
The locations of the Meteorological Stations used.

Station Latitude Longitude Altitude (m) Station code

Argostoli 38.18 20.48 25 16685
Chios 38.97 24.48 5 16706
Corfu 39.62 19.92 4 16641
Milos 36.72 24.45 183 16738
Mykonos 37.43 25.35 123 16750
Siteia 35.20 26.10 114 16757
Skyros 38.97 24.48 22 16684
Souda 35.53 24.12 150 16746
Santorini 36.42 25.42 37 16744
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populations of extremes. At the same time it must be sufficiently
low in order to create a dataset big enough for a better distribution
parameters estimation (Abild et al., 1992).

The climatic characteristics of the study area are of major
importance for the application and should be taken into con-
sideration before the selection of the threshold (Caires and Sterl,
2004). Independence between the events is critical and even high
thresholds cannot ensure it. This is the reason why minimum
separation time between the events should be established. For
European climates the separation time can be set at 48 h (Cook,
1985; Gusella, 1991) while Walshaw (1994) uses 60 h for Sheffield
wind data.

The next step is to select the peaks of the clusters and subtract
these values from the threshold. The created data (exceedances) is
used to simulate the distribution. For high thresholds, the number
of exceedances per year (crossing rate) is low and Poisson dis-
tributed while the total dataset is well approximated by the
exponential distribution (Palutikof et al., 1999) whose Probability
Density Function is given by:

FðxÞ ¼ ae�ax ð2:2:1Þ
where α is rate parameter and x represents the sample.

The exponential distribution fit to the exceedances is obtained
with the same techniques (ML and MoM) in order to achieve
comparable outcome. However, in this case the two methodolo-
gies converge and the parameter of the exponential distribution

(rate parameter) is given by α¼1/ρ, where ρ¼
Pn

1
xi

n is the mean of
the sample.

At this point a goodness-of-fit test is necessary for checking the
suitability of threshold selection in line with the parameters
estimation techniques. A graphical technique is the so called
Conditional Mean Exceedance (CME) graph that is also known as
residual life graph (Davison, 1984; Ledermann et al., 1990). Wal-
shaw (1994) proposed a different approach of CME named
reclustered excess graph. An analytical way to determine the
appropriate threshold is the well-known Kolmogorov–Smirnov
test (Marsaglia et al., 2003).

For the calculation of the extreme wind event UT with return
period of T years (T-year event) the threshold crossing rate is
necessary. The T-year event can be calculated for different values
of the shape parameter (k) and rate parameter (α) (Abild et al.,
1992):
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Assuming that the crossing rate (λ) follows the Poisson dis-
tribution, it can be calculated by λ¼n/M where n is the total
number of exceedances above threshold ξ, and M is the length of
data in years. For a Poisson simulation, uncertainty can be deter-
mined using the variance that is given by:

σðUT Þ � affiffiffiffi
λL

p
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ln2 λΤ
� �q

, where L is the length of data in years.
The T-year event can be assumed to be normally distributed

(Kite, 1975). Thus, the 95% confidence interval can be estimated as
1.96 �σ(UT) as in the AM method.

2.3. Statistical analysis

Despite the fact that the main objective of this study is to
present ways of estimating return periods of extreme wind events,
a statistical analysis and a comparison between the model and the
measurements will provide useful information and support to the
final results. For this reason different statistical indexes and graphs
were estimated for the data. The Coefficient of Determination (R2)
is a number indicating the fit of the modeled data and the mea-
surements, being calculated by:

R2 ¼ 1� Σk
i obs ið Þ� for ið Þ	 
2

Σk
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nΣ
k
i obs ið Þ

h i2 ð2:3:1Þ

where “for” denotes the modeled values, “obs” the corresponding
observations and “k” is the size of the sample. Bias and Normalized
Bias provide information about the systematic deviations between
the two data sets while the Root Mean Square Error (RMSE) takes
also into consideration non-systematic errors. Following the same
terminology, these indexes are estimated by the relations:

Bias¼ 1
k
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2.4. Data used

The estimation of return periods was based on data obtained
from both stations and atmospheric model simulations. Particu-
larly, the measurements are derived from ground stations and
refer to a five-year period (2006–2010). The selection of the
location of each station was made on a way to cover a large part of
the marine area of Southeastern Europe with different climatic
characteristics and complex geomorphological distribution. This
area is affected by a trade wind system called “Etesians” and deep
cyclogenetic activity moving from Central to East Mediterranean.
Concerning the West coast of Greece, the islands of Corfu and
Kefalonia were used. For the region of the Aegean Sea, the stations
of Skyros, Chios, Mykonos, Milos and Santorini were used. For
Crete, the used stations (Souda and Sitia) are located at the wes-
tern and eastern part of the island respectively. The data consists
of measurements recorded every three hours. For each measure-
ment, the average wind speed of the last ten minutes (out of the
three hours period) is used following the World Meteorological
Organization (WMO) instructions.

The location of the Meteorological Stations is provided in
Table 1 and illustrated in Fig. 1.

The second source of data to be processed is the database
generated under the framework of MARINA Platform project. One
of the major objectives of this project was the development of a
wind-wave-ocean current database that covers NE Atlantic and
Mediterranean. For the construction of this database, the atmo-
spheric model SKIRON was used (Kallos et al., 1997; Spyrou et al.,
2010) in combination with the 3-D data assimilation system, LAPS,
(Albers, 1995) to simulate the meteorological fields. For waves, the



Fig. 2. The Skiron (gray-shading) – WAM (green lines) coupling area. (For inter-
pretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Fig. 1. The Met-Stations used for the study.
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WAM model was used (Hasselmann et al., 1988; Bidlot et al., 2007;
Galanis et al., 2011; Bidlot, 2012).

SKIRON is a limited area atmospheric modeling system based
on the non-hydrostatic form of the primitive equations of motion,
continuity and energy conservation. It uses full radiative transfer
and surface energy budget parameterization. Arakawa E grid is
used for horizontal coordinates and Eta for the vertical. For more
details someone can look at Spyrou et al. (2010) and references
therein.

SKIRON and WAM have been used in various applications
worldwide and have been evaluated against various datasets.
More specifically, SKIRON and WAM models were used in a
number of projects related to wind and wave energy applications
with remarkably good performance. ENVIWARE, POWWOW,
ANEMOS, MARINA PLATFORM, WAUDIT and IRPWIND are few of
them. More information related to the projects and publications
can be found in http://forecast.uoa.gr/oldproj.php. Indicative
publications are: Galanis et al. (2012), Papadopoulos et al. (2002),
Zodiatis et al. (2003), Janeiro et al. (2012), Dykes et al. (2009),
Korres et al. (2002), Stathopoulos et al. (2013) and references
therein.

The models have been run at a high spatial resolution of
0.05°�0.05° latitude/longitude covering a large part of Europe
(Fig. 2).

SKIRON uses 45 levels in the vertical on a telescopic distribu-
tion (from surface to 50 hPa with more layers near the ground),
and a time step of 15 s. The initial and lateral boundary conditions
are prepared with the use of ECMWF 0.5°�0.5° gridded fields in
combination with the global network surface and upper air
observations and the 3-D data assimilation model LAPS. The lateral
conditions are updated every 3 h. The geomorphological datasets
that were used for the atmospheric and wave model are 30″�30″
global elevation, 30″�30″ land use and vegetation cover, 20 �20

soil classification and 10 �10 bathymetry. The SST fields used are
derived from NCEP with a resolution of 0.5°�0.5°. For ocean cir-
culation, the results from the global model Hybrid Coordinate
Ocean Model – HYCOM (Chassignet et al., 2003) have been inter-
polated from the original grid of 0.07°�0.07° to the model domain
of SKIRON and WAM. The produced output is available for the
period 2001–2010 on daily base.
3. Results

3.1. Statistical analysis

The results of the statistical analysis reveal the differences
between the model and the station data. It is obvious that in three
cases, there are higher systematic errors (Chios, Skyros and Siteia).
In Table 2, more statistical indexes are provided for the stations
under consideration.

The observed differences can be attributed to a number of
reasons including basic issues related to mesoscale modeling
algorithms (spatial and temporal resolution), topographic repre-
sentation etc. On the other hand, observations at discrete locations
include various sources of errors related to spatial representation,
instrument inaccuracies etc. In the present case, the observations
are recorded as discrete values of 10-min averages (in knots) and
stored in integer form. Converting knots to m/s for the comparison
with the model results an error, that may affect the distribution
fitting procedures discussed in the following sections, may appear.

http://forecast.uoa.gr/oldproj.php


Fig. 3. Histograms (left- a, c) and Weibull PDF plots (right- a, d) of wind speed for Milos (up- a, b) and Souda island (down- c, d) respectively.

Table 2
Statistical indexes of the Met-Stations used. JFM denotes January, February and March, AMJ denotes April, May and June, JAS denotes July, August and September and OND
denotes October, November and December.

Argostoli Corfu Milos Mykonos Santorini Siteia Skyros Souda Chios

R2 0.396 0.377 0.433 0.493 0.448 0.503 0.537 0.393 0.505
R2 for JFM 0.483 0.446 0.451 0.533 0.460 0.512 0.489 0.455 0.487
R2 for AMJ 0.372 0.392 0.395 0.440 0.415 0.495 0.560 0.412 0.444
R2 for JAS 0.311 0.327 0.387 0.484 0.380 0.465 0.554 0.268 0.450
R2 for OND 0.400 0.371 0.438 0.493 0.460 0.507 0.538 0.402 0.519
Bias �0.246 �0.475 �0.560 0.224 0.699 �1.012 1.041 0.076 1.645
Normalized bias 0.008 �0.064 0.013 0.134 0.219 �0.086 0.347 0.100 0.676
RMSE 2.051 2.097 2.945 2.806 2.588 2.735 2.778 2.353 2.758
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For the study of return periods, the above statistical comparison
does not give all the information needed since there is no focus on
the extreme wind speed behavior that is more important. A gra-
phical representation of the distribution of the datasets provides
additional information for the wind speed variability (see Fig. 3).

As the histograms and the Probability Density Function (PDF) of
the observed and modeled values show, the model underestimates
the wind speed (see the light skewness to the left). However, what
is not obvious in all cases, is the fact that the model overestimates
the extreme wind speeds. This is depicted in the scatter plots of
Fig. 4a and b (values of wind speed over an imposed threshold of
20 m/s). This range of values will be utilized for the estimation of
return periods.

The model simulates quite successfully the temporal evolution
of maximum wind speeds. However, for most of the stations, the
modeled peaks tend to be higher than the corresponding mea-
surements. This means that there will be an overestimation con-
cerning the annual maximum values of the sample as well. Having
in mind that these values constitute the data for the study of
return periods, an overestimation of the model estimation of
extreme wind events is expected. The latter is not inconsistent
with the purpose of the study. Instead, in such applications that



Fig. 4. Scatterplots of the modeled wind speed and the observations for Milos (left-a) and Souda island (right-b). Wind speed time series for a short period for both datasets
(bottom).

Fig. 5. Gumbel PDF of Annual Maxima (top-a) and P–P plot for the same fit (bot-
tom-b) for the island of Milos.
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can be used by construction industry, underestimation of return
periods will be more problematic.

In any case and in order to avoid the deviation observed, a local
adjustment of the model outputs would be useful. Such optimi-
zation can be held by various techniques such as Kalman filter
(Galanis et al., 2006; Louka et al., 2008; Kalnay, 2002) that is
considered to be a good tool to reduce bias. For the application of
this technique, observations are needed to be combined with
model results and train the system so as to minimize the corre-
sponding biases. The main advantage of this methodology is the
easy adaptation to the dynamic nature of systems and the short
training period needed. However the need of observations con-
strains the applicability of the method in certain areas and
timescales.

3.2. Extreme wind events and return periods estimation

The procedure developed for the estimation of return periods
of extreme wind speed is based on Annual Maxima and Peaks
Over Threshold methods. Each method was tested both for wind
speed and wind speed squared. In addition, the Method of
Moments (MoM) and the Maximum Likelihood Method (ML)
were used for the parameter estimation for the distribution fit-
ting. The goodness-of-fit was based mainly on the Kolmogorov–
Smirnov test.

For each one of the nine locations/islands that are mentioned
earlier, the input data was separated in four different datasets. The
first dataset is the 10-year time series derived by the MARINA
database (SKIRON-MARINA 2001–2010). The second is obtained
from the same database but for a five-year period (SKIRON-
MARINA 2006–2010) (corresponding to the same time period with
the observations). The third is the observations (Station with
missing values 2006–2010). The fourth is the modeled time series
that corresponds to available data of the station. (SKIRON-MARINA
database with missing values 2006–2010).

The methodology for the estimation of return periods is sepa-
rated according to the parameter distribution fitting tool. Begin-
ning with the MoM, the AM method can be utilized only for
SKIRON-MARINA 2001–2010 data as it is the only dataset that
covers the minimum time length required by the methodology. As
it is seen in Fig. 5, the Gumbel distribution does not provide a very
good fit for the station of Milos. This is mainly due to the small
number of values of the input data.
For the same station the extreme wind speeds and the corre-
sponding return periods have been estimated by applying the
MoM method and the results are illustrated in Fig. 6.

The POT method was applied to all datasets. The threshold was
selected between 98.5% and 96% quantile and the separation time
for the independence of events was set to 48 h. The Kolmogorov–
Smirnov tests have been employed to identify the exact threshold
within the mentioned range that provides the optimum fit for
each grid point. As it can be seen in Fig. 7 and the following
graphs, the exponential distribution fits well to the 10-year
SKIRON-MARINA dataset for the station of Milos.

Based on the estimated parameter of the exponential, the
extreme wind speed and the corresponding return periods with



Fig. 6. The extreme wind speeds and the corresponding return periods for up to 50
years using AM (MoM method – Milos).

Fig. 7. Exponential PDF of exceedances (top-a) and P–P plot for the same fit
(bottom-b) for the island of Milos.

Fig. 8. The extreme wind speeds and the corresponding return periods for up to 50
years using POT (MoM method – Milos).

Table 3
Annual Maxima of Milos modeled wind speed for the timeperiod 2001–2010.

Year Maximum wind speed (m/s) Year Maximum wind speed (m/s)

2001 17.22 2006 21.46
2002 17.26 2007 16.83
2003 21.70 2008 21.31
2004 22.09 2009 22.49
2005 21.09 2010 21.96

Fig. 9. The extreme wind speeds and the corresponding return periods for up to 50
years using AM (top-a) and POT (bottom-b) based on wind speed squared (MoM
method – Milos).
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the 95% upper and lower bounds have been estimated. The results
are illustrated in Fig. 8.

As an additional information that can be used in conjunction
with the above discussion, the maximum wind speed values for
each year are presented in Table 3.

Despite the fact that the length of the time series is small, the
estimated parameters of the AM method have led to acceptable
results since the POT method outputs converge to those of AM.

The same procedure was followed for the case of wind speed
squared values as input data but the methods did not provide
acceptable results because of the radical increase of the corre-
sponding confidence intervals as illustrated in Fig. 9.

Similar results have been achieved for all the datasets and this
is the reason why they are not further discussed.

The next technique to be tested is the ML method. For the use
of ML method a similar procedure was followed. Concerning the
application to wind speed squared, the results were similar to the
use of MoM.

Extreme wind events, defined with the use of the direct wind
speed values that are calculated by the AM method are illustrated
in Fig. 10. The results of the POT using MoM and ML are identical.
This is something expected because both methods end up to the
same equations for the estimation of the parameters of the



Fig. 10. The extreme wind speeds and the corresponding return periods for up to
50 years using AM (ML method – Milos).

Fig. 11. The extreme wind speeds and the corresponding return periods for up to
50 years for all datasets and methodologies (Milos).
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exponential distribution. For this reason the extreme wind speed
plot using the ML and the POT method is not included.

The obtained results are considered as quite satisfactory since
the values of these different approaches are close enough, a fact
that ensures the convergence of the methods and reduces the
corresponding uncertainty.

Figs. 7 and 10 depict that both results are characterized by good
exponentiality. For better understanding the behavior of the
methodologies tested here, a common representation has been
prepared and illustrated in Fig. 11. More specifically, the extreme
wind speeds with return periods up to 50 years as calculated for
both fitting methods (ML, MoM), both methodologies (AM, POT)
and all data sets have been plotted.

From this Figure it is clear that the model data series provide
higher extreme wind speed for almost all the return periods and
the applied methodologies. This is something that it was also
discussed previously and illustrated in Fig. 4. Comparing the
results obtained from the estimators MoM and ML on the same
dataset (2001–2010 SKIRON-MARINA) and methodology (AM) it is
clear that the first provides a slight underestimation (maximum
underestimation of 6.17%). However, this underestimation is
within the confidence intervals of both curves. Similar behavior
has been observed in most of the stations used in the analysis. The
small underestimations of MoM for almost all the sites and the fact
that ML method is easily adaptable to include effects of covariates,
or other influencing factors has led us in the selection of the latter
as fitting methodology. This is also in agreement with previous
work of other researchers (see Katz et al., 2002; Smith, 1989;
Zhang et al., 2004). For this reason the discussion will be limited to
the results obtained by the ML fitting methodology. The outcomes
of this analysis in all nine stations and methodologies are sum-
marized in Table 4.

Beginning with the confidence interval estimation, it is obvious
that for the POT method, smaller time series result to higher
confidence intervals. This is reasonable and expected since the
number of data on the second and third case diminishes. In
addition, the magnitude of the confidence intervals is highly
associated with the intensity of the estimated extreme wind
speeds. The AM method is based on the highest wind speed
occurred within each year that means there are only 10 values
used for the application. This leads to higher confidence intervals
ranging from 16.51% to 22.78%.

According to the same table, the 50-year extreme wind speed
estimated by applying the POT method on 5 and 10-years long
time series deviate by about 5% maximum that is within the
confidence intervals. This means that the used time series have
adequate length for such applications.

To explore the influence of missing data or the sampling fre-
quency of the time series on the return period estimation, the
results obtained by SKIRON-MARINA 2006–2010 and SKIRON-
MARINA 2006–2010 paired (missing data) are compared. It was
found that the highest difference was 9.41% and the lowest 0.35%
in Chios and Corfu respectively as seen in Table 4. Obviously this
difference is strongly related to the sampling frequency of the time
series because of the changes on the distribution upper tails.

Another considerable remark is that the POT methodology
applied in all datasets from the same source gives deviation in the
extreme wind estimation that is always within the confidence
intervals. This is a good indicator of the robustness of this
approach.

Continuing with the comparison of POT and AM for the esti-
mation of the 50-year extreme wind speed, the variations
observed in Table 4 can be attributed to the amount of data taken
into consideration by each method. Based on this, there are two
extreme cases to point out. The first is when the study area is
characterized by low wind speeds with a relatively small number
of some specific strong wind events. Such a behavior depends on
both the climatology of the region and synoptic scale character-
istics. In this case, the application of the AM will lead in over-
estimation as compared to the POT method that is not the normal
case. The opposite is true when an area is characterized by high
wind speeds encountered frequently. This is a result of the thick-
ness change of the probability distribution tail, fitted to the data.

Regarding the measurements, a constant extreme wind speed
underestimation is evident with only three cases (Milos, Siteia,
Souda) to be within the confidence interval limits. This was
already mentioned previously but here is worth mentioning
another influencing factor. More specifically, the observations are
measured in knots and are rounded to their integer part. The
conversion to S.I. metric system led to an equivalent discretization
that causes a distribution fit misbehavior. It is remarkable that in
every case the distribution fitting barely passed Kolmogorov–
Smirnov test. These fitting issues are obvious in the P–P plots of
Fig. 12.

Another important influencing factor in the analysis of obser-
vational time series is the quality of the measurements (e.g.
missing values, instrument malfunctioning, quality controls
applied for corrections etc.). For most of the cases such errors that
affect the values used for the extreme wind estimation cannot be
easily detected and any further modification is rather subjective.

Concluding, the spatial and temporal resolution are always
affecting the results and the credibility of the model and problems
of systematic or not biases may appear especially over complicated
topography. However, numerical models provide today a very
good alternative to observations especially over areas that are not



Table 4
Fifty year extreme wind speed and the corresponding confidence intervals for the all the stations.

Argostoli Chios Corfu Milos Mykonos Santorini Siteia Skyros Souda

POT SKIRON-MARINA (2001–
2010)

24.9272.19 24.1371.99 28.4572.83 27.2272.22 26.1771.86 32.2572.79 26.0172.34 30.8872.86 25.6372.02

SKIRON-MARINA (2006–
2010)

25.4973.19 22.9172.33 29.4574.18 27.5073.15 26.1072.60 31.6973.77 26.7073.70 29.9473.89 25.8972.89

SKIRON-MARINA (2006–
2010 paired/missing
values)

25.6673.84 21.8672.30 28.5574.23 27.7973.78 27.4573.19 33.2174.57 25.5973.56 31.3674.39 26.1473.07

Station (2006–2010
missing values)

19.5371.87 17.4171.57 21.5672.09 25.7772.93 20.8871.52 20.4371.43 24.9172.39 25.6472.68 23.1072.08

AM (ML) SKIRON-MARINA (2001–
2010)

23.5375.36 26.5975.81 22.8273.98 27.8775.95 29.5376.15 31.6676.39 27.0974.86 29.9974.95 27.7676.11

AM (MoM) SKIRON-MARINA (2001–
2010)

22.8074.82 25.4975.00 23.0374.12 26.2574.75 28.8575.64 31.7976.49 25.5673.75 29.0674.27 26.7975.41

Fig. 12. P–P plots of the exponential fit on observations (left-a) and modeled wind speed (right-b) exceedances.
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covered by the network of met stations. In the presented work, in
order to deal with problems relative to the model's accuracy due
to the above issues, high resolution – in time and space – models
have been adopted. However, there are always cases where local
effects cannot be fully resolved. One of the main objectives of this
paper is to examine the discrepancies that could emerge by the
utilization of NWPs in contrast to observations for the estimation
of extreme values and estimate extreme winds in areas where
observations are insufficient.

3.3. Extreme wind atlas

Based on the previous discussion, the SKIRON-MARINA data-
base is considered as an appropriate dataset for extreme wind
speed analysis. The purpose of this chapter is to apply the pro-
posed methodology for mapping the extreme wind speed with a
return period of 50 years. For this purpose the 10 m wind fields of
the SKIRON-MARINA 2001–2010 database were utilized. The map
covers the area between 19E–29E and 34N–41N longitude and
latitude respectively that includes the marine area surrounding
Greece and the islands of the region of interest. The results pre-
sented, provide information regarding the likelihood of strong
winds events, that can be used in risk analysis in constructions
such as offshore and onshore wind farms, oil platforms etc. In each
case and especially in terrestrial applications, this information
should be accompanied with higher resolution analysis simula-
tions to capture local features.
Two extreme wind speed Maps (Atlas) accompanied with their
confidence intervals have been prepared following two different
methodologies namely AM and POT.

For AM the annual maximum values have been used (10 values)
while for POT a threshold with the range 96–98% quantile was
employed. The threshold selection was based on the optimum the
exponential distribution fit to the exceedances.

Figs. 13 and 14 illustrate the 50-year extreme wind speed and
the associated confidence interval respectively by applying the
POT methodology. Similarly, Figs. 15 and 16 illustrate the 50-year
extreme wind speed and the associate confidence interval
respectively by applying the AM technique. As it can be seen, both
techniques identify the highest values in the same locations.
However, POT estimates in general higher values over larger areas
as compared to AM.

Another interesting point is that the POT methodology has in
general smaller confidence intervals as compared to AM. This is
something that has been mentioned also in previous chapters of
this work.

The first map (Fig. 13) illustrates an extreme wind speed range
from 10–11 m/s to 38–39 m/s while for the second (Fig. 15) is
slightly lower. The lowest values are found in areas where the
wind speed is generally lower due to topographic features such as
the Gulf of Corinth, the Dardanelles and the lee side of the islands.
A characteristic behavior is observed in Cycladic islands, where the
shading caused by clusters of islands reduces the likelihood of
extreme events occurrence. Larger values are observed mainly



Fig. 13. Fifty year extreme wind speed atlas using POT.

Fig. 14. Fifty year extreme wind speed confidence interval using POT.

Fig. 15. Fifty year extreme wind speed atlas using AM.
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Fig. 16. Fifty year extreme wind speed confidence interval using AM.

Fig. 17. Fifty year extreme wind speed differences of AM and POT (red color represents POT overestimation).
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offshore due to the absence of land obstacles (see Ionian Sea), on
the wind sides of the Aegean islands, at higher altitudes as well as
in areas with local features that affect the flow field.

Each country issued certain constrains and regulations in
general related to construction (on and offshore). In almost all
cases a uniform threshold is implied. For example, according to the
2009 Greek National Annex of ELOT-EN-1991-1-4 (http://portal.
tee.gr/portal/page/portal/SCIENTIFIC_WORK/scient_typopoiisi/
eurocodes, http://www.eurocodes-online.com), the reference
velocity, which corresponds to the extreme wind speed calculated
here, is set to 33 m/s for the islands and the coastal zones. It can be
easily observed that using POT method, this threshold is surpassed
in many cases. More specifically, concerning the Ionian islands,
higher wind velocities are found on the west part of them
(windward side). Similarly, in the Aegean Sea the northern parts of
the islands are mostly affected. Analogous distribution was found
by following the AM methodology.

As mentioned earlier, the extreme values obtained by using the
two methods exhibit differences, which in some cases are sig-
nificant. These are mainly attributed to the way the input data is
created in each case, the size of the data used and the climatic
characteristics of the study area. Fig. 17 illustrates the difference in
the results of the two methods. Red represents cases where the
POT method overestimates the extreme wind speed relatively to
AM, while blue represents the AM overestimation as compared
with POT.

Based on Fig. 17 and on the differences that are observed,
information about wind speed characteristics of an area can be
extracted. A characteristic example is the case of Thermaikos Gulf
(NW AEGEAN, point A in the Fig. 17). The climate of the area is
influenced by both synoptic and local conditions and is char-
acterized by strong winds under certain circumstances. Vardaris
and Hortiatis are two cases of winds that affect and form the local
flow pattern. Vardaris is a dry and cold northerly wind that is
channeling along a valley (point B in Fig. 17) and ends up at
Thermaikos Gulf. It has a high frequency and occurs mainly in
winter. At the same region, Hortiatis is a powerful easterly wind
that blows from the nearby mountain (point C) during winter.
These wind systems of this region form general conditions char-
acterized of moderate to high frequency of appearance. Taking this
into consideration, it is obvious that the POT method could be
considered as more suitable for this area since it takes into account

http://portal.tee.gr/portal/page/portal/SCIENTIFIC_WORK/scient_typopoiisi/eurocodes
http://portal.tee.gr/portal/page/portal/SCIENTIFIC_WORK/scient_typopoiisi/eurocodes
http://portal.tee.gr/portal/page/portal/SCIENTIFIC_WORK/scient_typopoiisi/eurocodes
http://www.eurocodes-online.com
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more input data. These characteristics lead to the conclusion that
the use of POT method will produce higher extreme wind speed
values as compared to AM in this case. This comes also into
agreement with Fig. 17.
4. Concluding remarks

In this study an effort was devoted to analyze the frequency of
extreme wind speed events in terms of return periods. Different
techniques have been tested and implemented accordingly. Two
basic methodologies have been selected, namely the Annual
Maxima (AM) and the Peaks Over Threshold (POT). They have
been applied to observational and modeled datasets. The analysis
results are related to the climatic characteristics of the study area.

The uncertainties that arise from the different approaches of
estimating extreme winds have been studied and quantified
through multiple sensitivity tests. The convergence of the theo-
retical probability distribution to the sample, for both methods,
has been tested for wind speed and wind speed squared. For the
same purpose, two parameter estimation techniques have been
applied, namely the Method of Moments (MoM) and the Max-
imum Likelihood (ML). The results are considered as satisfactory
by using the wind speed. The opposite is true when using the wind
speed squared.

The impact of the length of the time series has been investi-
gated for the POT method. It was found that the deviation of the
outcome is within the confidence intervals. Based on these results
we can say that time series with length of at least five years and
sampling frequency of one hour is considered as adequate to
estimate the 50-year return periods. However, a 10-year period is
desirable.

The influence of missing data and sampling frequency of the
time series on the return period estimation was found to be cri-
tical. According to these findings, the results are strongly related to
the sampling frequency of the time series because of the impact on
the probability distribution upper tails.

The use of the POT method to estimate extreme wind events
resulted in overestimation when model datasets were used as
compared to observational input. This is partly due to the structure
of the observation data and the resolution capabilities of
the model.

The application of the AM method led to comparable results
with POT. However there are cases where the two methods differ
significantly. These differences are mainly associated with the
climatological wind patterns of the study area, the frequency and
intensity of extreme wind events.

The ML method was used along with AM and POT to derive the
50-year extreme wind speed for the broader maritime area of
Greece (including the Ionian and the Aegean seas). The mapping of
the results from each approach provided valuable information that
can be used in projects and actions that are affected by non-
frequent wind speed events. In addition, the differences that can
be found in certain areas are indicators of the local climate and
denote the necessity of both procedures.

Finally, the discussed methodologies can be considered as
useful tools on defining extreme wind characteristics and impose
the necessary regulations for wind energy and/or construction
activities.
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