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ABSTRACT

Over the last decades, wind energy industry has been growing with an increasing rate. This is highly relevant to the
need of new wind farm site selection with certain standards such as high wind potential and accessibility. Even in
windy areas, low wind speed persistence can be characterized as an extreme (non-frequent) atmospheric condition
for the electricity network as it can lead to low or no energy production. The current work is focused on the estimation
of the duration and the frequency of occurrence of low wind speed events using the principles of extreme value theory.
The two methods used are the ‘intensity given duration’ and the ‘duration given intensity’ that lead to the same point
from different perspectives. The data used is derived from a 10 year, hindcast, high-resolution database developed by
the Atmospheric Modeling and Weather Forecasting Group of the University of Athens. The great potential and
multinational interest concerning energy applications in the North Sea has led to its selection as a study area. The
outcome of the study includes the development of intensity–duration–frequency curves as well as a comparison
between the two methodologies adopted. Based on these, the largest period of no energy production for a preselected
probability of occurrence is estimated for the area of interest. The results of this work could be potentially supportive
for studying the regional climatology. Such information can be included in risk assessment techniques and can be
applied among others for energy activities. Copyright © 2017 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Wind farm siting is approached today by generally accepted standards.1 High wind potential and site accessibility are
among the most important requirements. However, these cannot always be compatible, and this is the reason why risk
assessment techniques are needed. These techniques usually take into consideration various parameters including the
impact of wind speed in a wind power project. The study of the wind speed probability distribution main body and
upper tail is used for the estimation of the energy potential and the extreme wind events that characterize the area
under consideration.

A better understanding of the environmental resources behavior requires additional information that can be used towards
a more integrated research in the field of wind farm siting. For this reason, apart from the mainstream approaches described
shortly before, the concept of low wind speed event is introduced. The existence and the frequency of such events are pos-
itively correlated with the existence of high pressure systems. These systems are characterized by light winds at the surface,
cover large areas and can last up to several days depending on the regional climate. This form of extreme conditions can
cause several problems in electricity networks because several turbines are affected simultaneously.

There are more than one definitions of calm conditions related to light winds. It should be noted that different au-
thors use various ways to define it and refer to a range of conditions. A characteristic example is the definition implied

WIND ENERGY

Wind Energ. (2017)

Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/we.2078

Copyright © 2017 John Wiley & Sons, Ltd.



by Smith.2 According to this, calm conditions are specified when the mean wind speed is comparable with or less than
the root-mean-square turbulent horizontal velocity. The present work is wind energy oriented. The cut in speed of a
wind turbine has values normally around 3 m s�1, depending on its type. For this reason, the threshold of 3 m s�1

is used here for the low wind speeds definition. However, the methodologies discussed in the following sections can
be applied for different values.

Towards this direction, this study is focused on the duration and frequency of low wind speed events based on modeled
wind speed time series. The main objective is to define the probability of occurrence of such events in terms of return pe-
riods and quantify the associated uncertainties. This estimation can be approached by using the principles of extreme value
theory. For this purpose, two methods that lead to the same point by different perspectives are used, namely, ‘intensity
given duration’ (IGD) and ‘duration given intensity’ (DGI). Different tools and probability distributions are tested in order
to quantify the uncertainties employed from the use of these methodologies. The convergence of the final results is
discussed, and the application in a wider area is tested.

Intensity given duration provides more information simultaneously if compared with DGI, as the results are
expressed through intensity–duration–frequency (IDF) curves.3 These are widely used in hydrology for the study of
extreme precipitation events4 or the frequency and the duration of droughts.5 IDF curves can be used also in wave
climate characterization describing the relationship between sea state intensity, sea state duration and frequency.6

Considering wind, there is a variety of studies describing the upper tails of wind speed distribution in terms of return
periods.7–9 Studies about low wind speed events are quite few. Deaves and Lines10 studied the frequency of low wind
speed conditions oriented for risk assessments for hazardous installations. More specifically, they studied the effect of
low winds on the dispersion of toxic or flammable gases. Continuing this work, Lines defined guidelines for the inclu-
sion of low wind speed conditions into risk assessment techniques.11 Gadian focuses on the directional persistence of
low wind speed that can affect the dispersion of pollutants.12 Another approach, introduced by Leahy and McKeogh,13

is focused on the implications of low wind speed persistence in wind power and contains the concept of both IGD and
DGI methodologies.

In the present study, for the application of DGI and IGD, annual maxima/minima (AM) method14 was used for the
extrapolation in time. The area under consideration is a part of the North Sea with rather high wind energy potential. This
characteristic led the surrounding countries to take advantage of it and use it in energy applications.

The data employed in this work consists mainly of modeled time series, extracted from a database created by the Atmo-
spheric Modeling and Weather Forecasting Group (AM&WFG—University of Athens) under the framework of Marina
Renewable Integrated Application Platform (MARINA—Platform, http://forecast.uoa.gr/proj_marina.php,15). The use of
the database has the advantage that wind speed values are available at different model levels/heights (here 80 m) and cover
a large area without missing values. At the same time, the spatial coverage allows neighboring points on the spatial grid to
be used to test elements of the methodology. More information about this database is provided in a following section (data
used).

The provided output forms alternative information concerning the climatology of the study area that is not widely
used. Such information can be included in risk assessment techniques and can be applied among others for energy
activities.

2. METHODOLOGY APPLIED

The study of the existence and frequency of low wind speed events is based on two approaches, ‘intensity given duration’
and ‘duration given intensity’ method. In the following subsections, the basic facts and tools are discussed.

2.1. Intensity given duration

The application of this methodology requires the selection of a range of different durations/windows from 2 to 480 h
(20 days, as a safe limit ensuring a big range of durations13). More specifically, maximum values mvd of wind speed vt
are estimated over moving windows for each year:

max vt…vtþdf g ¼ mvd ;where t ¼ 1…total annual hours� df g; d ¼ 2;…; 480 (1)

As a result, a new array (mvd) with n � d + 1 components per year is obtained with cumulative distribution function
(CDF) Fu(u|d) and probability density function (PDF) fu(u|d), where u is the variable under study (here wind speed), n
equals the total hours (of each year) and d represents the window length (in hours).

The next step is the adoption of a representative distribution for the extrapolation in time. The PDF and the CDF of the
data will be denoted as Fu(u|d;a,b,c,…) and fu(u|d;a,b,c,…), respectively. The parameters a, b, c, … are highly dependent
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on the given duration, the characteristics of the selected distribution and the method used for the distribution fit. The rela-
tion between the intensity, the duration and the frequency (return period- Tu) of the event is the following:

1� Δt
Tu

¼ Fu ujd; a; b; c;…ð Þ (2)

where Δt is the time interval of the data to be fitted.
In the present study, the extrapolation will be based on the principles of extreme value theory and the use of annual

maxima method as it is considered straight forward, and no decisions have to be made for its application.7 The fitting
distribution selected is Gumbel (minimum) as the desired outcome is the lowest value for a defined return period.13

For this reason, there is the need for a new dataset, created by selecting the lowest value of the vector mvd for each
particular year. Because the database is 10 year long, the dataset will be constituted of 10 values in total. The new
PDF and CDF are set as Fu

0(u|d;α,β) and fu0(u|d;α,β) respectively where α is the scale and β is the location parameter.
At the same time, Δt in Equation (2) is equal to one as the values are annual. The given equation is transformed into the
following:

1� 1
Tu

¼ Fu
0 ujd; α; βð Þ (3)

The application of this method can be carried out by using different tools for the parameters estimation such as
method of moments (MoM)16,17 and maximum likelihood (ML) method.16,18 Using these as well as the CDF of Gumbel
(minimum) and Equation (3), the maximum value of a low wind speed event (U) of a given duration (D) can be
extracted from:

UD Tuð Þ ¼ α� ln � ln 1� 1
Tu

� �� �� �
þ β (4)

(Variable U corresponds to the wind speed threshold as defined in the following lines in DGI methodology.)
Applying different time windows will result to a matrix of the wind speed (U), the total duration (d) and the return

period of the event (Tu) (all combined). The graphical representation of this matrix is made through the use of IDF
curves.

The wind speed maximum intensity for a given return period can be related to the duration of the event by fitting a curve
to the results. This curve is a function of the duration, which is found to be well represented by a second degree polynomial
(5.1) or a logarithm function13 (5.2):

U Dð Þ ¼ b D2 þ c Dþ d (5:1)

U Dð Þ ¼ d þ c ln Dð Þ (5:2)

In both cases, the parameters (b, c and/or d) are estimated using least squares method. In this study and for the selected
area, polynomials were found to be more representative concerning lower speeds, which is the target.

2.2. Duration given intensity

This approach is based on the definition of a threshold. This threshold is set at 3 m s�1 in the present study, based on the
cut-in wind speed for energy generators. The time windows that wind speed is constantly below the selected threshold are
characterized as low wind (no production) periods. These cases can be identified by taking into consideration the threshold
crossovers. The application of this methodology required the largest period of each year to be selected (annual maximum)
for the creation of the dataset needed to apply annual maxima method. The distributions used for the dataset fit vary, while
the parameter estimation method tested is ML. For the estimation of low wind speed periods with return period Td years, the
following relationship was used:

1� 1
Td

¼ Fd dju; α; β; γð Þ (6)

where α is the scale parameter, β is the location parameter and γ is the shape parameter.
Equation (6), combined with the CDF of the distributions under study, leads to the relationships for the estimation of the

T-year duration of a low wind speed event.
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The selected distributions belong to the generalized extreme distribution family. The use of them is common for the es-
timation of return periods, but it depends on the dataset characteristics (e.g., skewness) and the desired degrees of freedom
(parameters of the distribution). The distributions used alongside with the equations for the estimation of the durations are
as follows:

Gumbel (maximum) distribution:

Du Tdð Þ ¼ β � αln � ln 1� 1
Td

� �� �
(7)

Generalized extreme value (GEV) distribution:

Du Tdð Þ ¼ β þ a
γ

1� � ln 1� 1
Td

� �� �γ� �
(8)

Weibull distribution:

Du Tdð Þ ¼ α ln Tdð Þ1=γ (9)

Rayleigh distribution:

Du Tdð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2α2 ln Tdð Þ

p
(10)

3. DATA USED

The area of interest is a part of the North Sea (51°-60°N, 5°W-15°E) that is illustrated in Figure 1 (marked by a red box).
The choice of this location was made for its wind climate characteristics that favor the operation of offshore wind energy
platforms.19 The wind energy potential is rather high, and the surrounding countries are investing in it by installing wind
generators. Wind climate over the North Sea is influenced by the ‘Westerlies’ that is a wind pattern between 30° and 60°
latitude. Generally, the weather is characterized by relatively high winds as illustrated in Figure 2. The prevailing weather
systems are associated with the lows generated in the North Atlantic region and move eastward. Less frequent synoptic
systems are the so-called polar lows that are connected with strong wind conditions.

The source of data used for the study is derived from the MARINA database.15 Wind speed of the third vertical level
(80 m) of the atmospheric model used for the hindcast analysis is the quantity under consideration. The choice of this level
is based on the fact that this is a direct output of the model (no interpolation needed) and corresponds to the height used in
most of offshore wind generators. Concerning the mentioned database, one of the most important effects accounted for, was
the coupling between wind and wave-induced processes using state-of-the-art modeling systems. More specifically, the
regional atmospheric model SKIRON20–22 is used for wind; the third-generation ocean wave model WAM23,24 is used
for wave and HYCOM25 for currents. The coupled system, used for the present study, is a well-established model and
successfully evaluated in various research works.26–32 For the MARINA platform project, the models have been run at a
relatively high spatial resolution of 0.05° × 0.05° latitude/longitude covering a large part of Europe, North Atlantic and
Mediterranean region. SKIRON uses 45 levels in the vertical on a telescopic distribution (from surface to 50 hPa with more
layers near the ground) and a time step of 15 s. The outputs of the models are co-located and stored with time frequency of
1 h for the period 2001–2010.

4. RESULTS AND DISCUSSION

4.1. Statistical analysis

The main objective of this study is to present different approaches for the estimation of low wind speed periods based on
modeled data. The length of observational time series in the area is not statistically adequate for the evaluation of the meth-
odology. However, similar studies support the use of measurements for such applications.13 So, despite the fact that the
evaluation of the model is not the first priority of this work (it has been performed in other works33), a short statistical anal-
ysis is included to support the use of it for extreme persistence statistics. Therefore, the purpose of this chapter is not to
discuss the model performance in detail but to illustrate some local characteristics and how they are recorded in the model
output and observations. In particular, measurements are derived from three different sources. The first is the offshore re-
search platform FINO 1 used for studying environmental conditions for wind power applications in the German North Sea.
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Figure 2. Mean monthly wind speed at 10 m of January 2015. [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 1. The SKIRON–WAM coupling domain (gray box) and study area (red box). [Colour figure can be viewed at
wileyonlinelibrary.com]
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The second is the meteorological mast at the site of the Docking Shoal Farm. The third source of measured data is the
Greater Gabbard offshore wind farm located around 22 km east of Suffolk coast. The quantity to be evaluated is the
80 m wind speed. The locations of the stations are presented in Figure 3.

It should be noted that modeled parameters are smoothed, during the integration procedure, over the corresponding
timestep (15 s in our case). From these values, the model provides/stores outputs on an hourly basis without any further
smoothing or averaging. In addition, the observations used are 10 min wind speed averages paired with the modeled data.

Different statistical indexes and graphical analyses were utilized. Coefficient of determination (R2) is a number that in-
dicates the fit of the modeled data to the measurements. Bias and normalized bias provide information about the systematic
deviations between the two data sets. Root mean square error represents the sample standard deviation of the differences
between predicted and observed values (it takes also into the consideration the non-systematic errors).9

The results of the statistical analysis reveal a rather good agreement between the model and the station for all three cases.
In Table I, the basic statistical indexes are provided for the station under consideration. The low bias indicates the
non-existence of systematic errors. Higher values (within acceptable limits though) of the other indexes are associated with
system noise. The deviation of the two datasets is a result of the smoothing effects associated with the atmospheric model
temporal and spatial resolution and physical parameterization. Root mean square error is always high in such model anal-
ysis. It is affected by temporal variations and high values and can be attributed among others to phase errors.34 Such errors
are not considered as crucial in our analysis because we focus mainly on the climatic characteristics (long term). The last is
the reason why the previous statistical comparison needs to be accompanied with graphs comparing the probability distri-
bution of the samples. To identify the model performance, Q-Q diagrams have been prepared and illustrated in Figure 4.

Figure 3. The area of interest and the coordinates of the five selected locations for the application (a, b, c, d, e), the test location for the
estimator selection (f) and the offshore platforms FINO 1, Docking Shoal and Greater Gabbard. [Colour figure can be viewed at

wileyonlinelibrary.com]

Table I. Statistical analysis of the modeled wind speed against FINO 1, Docking Shoal and Greater Gabbard platforms.

FINO 1 Docking Shoal Greater Gabbard

RMSE (m s�1) 2.7965 2.613 2.568
Correlation coefficient 0.799 0.821 0.826
R2 0.638 0.674 0.6823
Bias (m s�1) �0.044 �0.453 �0.472
Normalized bias 0.113 0.052 0.054

RMSE = root mean square error.
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These graphs are focused on low wind speeds as this is the main concern here. As it is seen, the model compares quite well
for all cases giving acceptable response.

Issues associated with the modeling capabilities of wind speed in general are well known. The main purpose of this work
is not to study wind speed variability but to identify periods of low wind speeds. In order to define the durations of low
wind speed events, the wind speed of 3 m s�1 was selected because this is the operational threshold for many wind turbines.
The total annual events with wind speed below this threshold are presented with respect to their duration (from 2 h to the
longest duration) in Figure 5. The year of 2006 of FINO 1 data is chosen as an indicative example because in this case, the
missing values of the observations are limited.

It is observed that for the low wind speed, events between the modeled time series and the observations show a good
agreement. At the same time an underestimation of the model concerning the short period events is clear, while for longer
periods, there is a slight overestimation. The existence of large amounts of missing measurements creates difficulties in this
type of comparison as the wind speed down and up-crossings of the selected threshold is a precondition for the definition of
low wind speed events. It should also be noted that some types of anemometers face problems measuring such low wind
speeds. At the same time, the sampling rate can affect the estimation of the duration of low wind speed events as considered
here. However, the errors imported from it are not significant because it is well known that light wind conditions show
consistency in terms of intensity.

The lack of availability of at least 10 year measurements with no (or small amount of) missing data causes signif-
icant problems in the application of the methodology. This, combined with the fact that the atmospheric models
provide the needed parameters in multiple grid points (giving a spatial distribution of them), supports the use of
modeled results. So despite the already mentioned differences, the study is based on a mesoscale modeling system

Figure 4. Q-Q plots between Marina database (wind speed—80 m) and FINO 1 (a), Docking Shoal (b) and Greater Gabbard (c) plat-
forms. [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 5. Duration of low wind speed events (<3 m s�1) based on the dataset of Skiron-Marina and the measurements of FINO 1 for
the year of 2006. [Colour figure can be viewed at wileyonlinelibrary.com]
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database because in the present work, the main objective is to discuss different methodologies and approaches for
estimating low wind speed events.

4.2. Intensity given duration approach

4.2.1. Intensity–duration–frequency probability plots.
Low wind speed conditions are always associated with weak pressure gradients encountered often in anticyclonic systems
over NE Atlantic and Northern Europe. In addition to the previous discussion, the area under consideration is offshore and
rather homogeneous. These facts can lead to the assumption for similar behavior over relatively large regions. Therefore, it
is expected that the outcome of the applied methodology from neighboring model grid points should be similar. In this
study, five different characteristic areas have been identified and used for further analysis. The selected areas have been
chosen according to the mean wind speed, the distance from the coast and the fetching range (Figures 2 and 3). For each
of these areas, a square consisting of three consequent points for each side was used (nine points in total).

Using this dataset, probability intensity–duration–frequency analysis was performed. This analysis can be used to esti-
mate the robustness of different techniques for the estimation of the distribution parameters. This can be achieved through
the spread of the raw outcome (before the fit of the second-degree polynomial), among the nine neighboring grid points as
illustrated via probability plots. The methodology is used for the selection of the better estimator for this area among the
MoM and ML. An example of a near-shore location (location f in Figure 3) is depicted in Figure 6. In this case, MoM
shows a slight higher deviation concerning the outcome of neighboring points. Apart from the graphical comparison, the
values under study have been fitted to a second-degree polynomial, and the corresponding spread is quantified by standard
statistical measures (R2). The previous discussion reveal a slightly better behavior of ML (0.83/0.80), but with a small
difference.

In general, bigger differences were found in locations surrounded by land. Considering this, the result could be that
MoM may face problems when applied in areas with lower winds. It is known that in light winds, geostrophic control
becomes weak, and the land-water distribution becomes relatively more important in determining the wind field. The last
can lead to the conclusion that the local climate of near-shore areas may affect the fitting capabilities of MoM and lead to
different behavior of neighboring locations. All these come into agreement with previous work35–37 suggesting that ML
method is easily adaptable to include effects of covariates or other influencing factors. For this reason and after a number
of corresponding sensitivity tests, it was decided that the ML method is more suitable for this study.

Another important use for the IDF probability graphs would be to quantify uncertainties associated with the spatial
distribution of low wind speed events. In this way, the area of interest is described combining the wind speed threshold with
the total duration of the event and the probability distribution as confidence interval limits. The probability plots are applied
in the fitting curves for the five preselected areas and displayed in Figure 7.

A conclusion that could be reached by taking a closer look to these probability plots is that in case e (the location is
shown in Figure 3), there is a relatively large spread that corresponds to a wider confidence interval mainly in higher du-
rations. The reason for this behavior is the location of this area and the specific climatic characteristics as mentioned before.
The position is surrounded by land with an open to the North. The land blocks high winds, and therefore, the mean wind
speed has smaller values as compared with the North Sea in general. At the same time, local winds dominate the location.
As mentioned earlier, in light wind conditions, land-sea interaction becomes considerable and affects the large scale flow.

Figure 6. Intensity–duration–frequency probability plots using maximum likelihood (a) and method of moments (b) methodologies
(20 year return period) for a near-shore location (10.7 E, 56.1 N—location (f) in Figure 3). [Colour figure can be viewed at

wileyonlinelibrary.com]
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The influence is more obvious in higher return periods. However, higher deviations are observed in longer durations that
correspond to stronger winds. This does not affect the analysis presented in this paper, as lower winds are the main interest.
Concluding, it should be noted that a similar procedure could be used for larger areas and more grid points depending on
the needs of the study.

4.2.2. Intensity–duration–frequency curves.
The establishment of the relation between the duration, the intensity and the frequency of occurrence of a low wind speed
event is represented through the IDF curves. The IDF curves of events associated with wind speed probability distribution
lower tail for 20 years return period and the corresponding confidence interval are illustrated in Figure 8. The confidence
intervals have been calculated by utilizing the corresponding intervals of the PDF parameters as estimated by the fitting
procedure (ML).13 The curves tend to bend asymptotically, something that was rather expected. For larger time windows,
the highest observed speed should be higher but with a decreasing rate. It is also observed that, for point e, the IDF curves
reach a maximum value considerably smaller than the other test cases. A conclusion that can be reached is that this area is
characterized by low wind speed events that show persistence and/or higher frequency of occurrence as compared with the
other test cases. The comparison of the four remaining cases revealed a consistent pattern despite the different local
characteristics. However, location d is characterized by a lower curvature. This can be attributed to the fact that it is a deep
offshore area, and because there are not land barriers, it is highly exposed to the synoptic systems passage. The synoptic
systems of North Atlantic are well known for moving fast and formatting sharp pressure gradients. Locations a, b and c show
similar behavior, although it would be expected to observe larger deviations due to the local climate conditions and partic-
ularly the sea–land interaction. This shows a persistence in the characteristics of the IDF curves in near shore locations.

The IDF curves for the fourth and fifth test case for different return periods (2, 5, 10, 20 and 50 years) are shown in
Figure 9. As expected, the relative positions of the curves with different return periods lead to the conclusion that low wind
speed events are less likely to happen for higher durations. From another point of view, such events are expected to last
more for higher return periods. At the same time, wind characteristics seem to affect the shape of the IDF curves as the
low-wind-speed-event probability of occurrence is obviously higher in the second case (location e).

4.2.3. Spatial distribution of low wind events.
The application of the procedure introduced in the previous steps to the whole area of study led to a series of maps describ-
ing the spatial distribution of the three parameters (Equation 5.1) used for the IDF curves. The coefficient of x2 (α) can take
negative values and in some cases values close to zero. In these cases, the parabolic curve part used for the fit of IDF curves
is open downward. In some single cases, mainly near shore, the value of α is close to zero, and the curve tends to become
linear. The linear coefficient of x (β) takes some negative and more positive values. When the coefficient takes positive
values, the line will shift towards the left-bottom and vice versa. The combination of the linear and the nonlinear terms
shows how fast the curve will bend and determines the point where the upper wind speed threshold will not change

Figure 7. Intensity–duration–frequency probability plots for the five selected locations (20 year return period). [Colour figure can be
viewed at wileyonlinelibrary.com]
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dramatically for larger time windows. More precisely, the coefficient γ determines whether the curve shifts upward or
down. The value of γ is in fact the value where the curve intersects the y-axis. It is obvious that everywhere, it is below
the selected threshold of 3 m s�1 used for the definition of low wind speed events, which means that such events are more
than likely to happen. The negative values mean that the curve will intersect the positive part of x-axis, and wind speed will
be constantly close to zero for several hours (for the defined return period). These parameters can be used for the creation
of IDF curves throughout the used domain. Their spatial distribution supports the previous discussion and is depicted in
Figure 10.

The noticeable spatial distribution of the parameters will change the shape and the characteristics of the IDF curves.
These parameters can be used for the solution of the second-degree polynomials for 3 m s�1 [f(x) = 3], for each point.
The outcome is the maximum (statistically) consequent no-energy production period with a recurrence interval of 20 years
(Figure 11). It can be easily observed that in the open sea, a low wind speed event can last up to 4–5 days with a recurrence
interval set to 20 years. The values rise near shore and reach to more than 10 day periods. This increase is generally ex-
pected in gulfs and areas where the wind shadow effect of land affects the wind intensity overseas. At the same time, there
are some single cases where low wind speed events can last up to 20 days. This is caused by the interaction of complex

Figure 9. Intensity–duration–frequency curves for locations (d) (left) and (e) (right) and different return periods. [Colour figure can be
viewed at wileyonlinelibrary.com]

Figure 8. Intensity–duration–frequency curves and the associated confidence intervals for the five selected locations (20 year return
period). The confidence intervals have been calculated by utilizing the corresponding intervals of the probability density function param-
eters as estimated by the fitting procedure (maximum likelihood). The maximum expected wind speed over a low wind speed event is
referred here as wind speed threshold to be in conjunction with duration given intensity method. [Colour figure can be viewed at

wileyonlinelibrary.com]
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terrain (with high altitude variations near the shore, especially in the Scandinavian Peninsula) with the atmosphere and the
effects of this in the configuration of the model. On one side, the flow near the coast and especially in areas with significant
topographic barriers or complex coastline is rather complicated because of dynamical and thermodynamical effects (e.g.,
channeling, sea-land barriers and boundary layers). On the other side, the mesoscale models fail to reproduce such details
in flow structure due to the model resolution used and in general due to the configuration. In this case, the observed discrep-
ancies can be attributed to both.

Figure 10. Spatial distribution of the three parameters used for the intensity–duration–frequency curves. [Colour figure can be viewed
at wileyonlinelibrary.com]
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4.2.4. Duration given intensity approach.
For the DGI approach, multiple distributions, such as Gumbel, GEV, Weibull and Rayleigh, were used for the extrapolation
of the low wind event duration. The application was made for the five preselected areas used previously. The outcome of
IGD approach for the threshold of 3 m s�1 is used as a measure for comparison. The results for different return periods are
shown in Table II.

For a better understanding of the behavior of the DGI approaches, a normalization based on the IGD methodology was
employed and presented in Table III. More specifically, the result is derived as follows:p ¼ k2�k1

k1
∙100%, where k2 stands for

DGI method and k1 for IGD. It is obvious that both the use of Gumbel and Weibull distribution lead to a constant under-
estimation as compared with IGD method. This underestimation tends to become more significant in greater return periods
and shows a lower exponentiallity. Concerning the application of GEV distribution, there is not a particular pattern on the
behavior of the results. The major issue to be mentioned though is that the analysis resulted to up to 80% higher values for
the fifth case study. This is a result of the fact that the shape parameter in this case (one of the three parameters to be es-
timated) is not limited. This is in contrast with Gumbel, for example, where the shape parameter is equal to zero. This can
lead to a ‘bad’ distribution behavior in some cases, depending on the characteristics and the size of the sample. At this
point, it should be noticed that in this application, only 10 values were used (annual maxima) that is the lowest limit of
the input size recommended for such applications.14

Figure 11. Maximum consequent hours of no energy production with 5% annual probability of occurrence. [Colour figure can be
viewed at wileyonlinelibrary.com]

Table II. DGI and IGD results (duration in hours) for the selected locations (20, 30, 40 and 50 years return period).

Duration given intensity Intensity given duration

Gumbel GEV

20 years 30 years 40 years 50 years 20 years 30 years 40 years 50 years 20 years 30 years 40 years 50 years

a 61.4 65.5 68.4 70.6 58.9 62.5 65 67.1 68.1 75.7 81.3 85.9
b 90.5 97 101.5 105.1 97.3 105.7 111.8 116.5 95 106 114 121
c 67 71.1 74 76.3 61 63.1 65.2 66.1 74 84 91 97
d 52.4 55.3 57.4 59 76.5 87.6 96.6 104.3 64.4 73.3 80 86.3
e 55.6 57.5 58.8 59.8 108.7 134.8 157.2 177.7 81.7 88.6 94 98.5

Weibull Rayleigh

20 years 30 years 40 years 50 years 20 years 30 years 40 years 50 years

a 59.5 62 63.6 64.8 68.1 72.6 75.6 77.9
b 85.3 89.1 91.6 93.5 96.1 102.4 106.6 109.8
c 68 70.8 72.7 74 78.3 83.4 86.9 89.5
d 46.8 48 48.7 49.3 61.5 65.6 68.3 70.3
e 50.6 51.2 51.5 51.8 76.9 82 85.4 87.9

DGI = duration given intensity; GEV = generalized extreme value; IGD = intensity given duration.
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Another important issue, which is worth mentioning, is the better results obtained with the use of Rayleigh distribution.
The highest difference reaches 18.5%, while for Gumbel (that is a more popular distribution used in AM method and sim-
ilar applications), it reaches 39.3%. At the same time in most of the cases, the difference is lower than 10% and within the
confidence intervals of both methodologies, namely, IGD and DGI. It should be mentioned also that the exponentiality in
DGI method is higher if compared with IGD because for higher return periods, the growing ratio is obviously smaller in the
first case. Despite the acceptable results, the method is case sensitive, and the use in other areas (with different climatic
characteristics) requires a prior analysis similar to the one performed here.

5. CONCLUSIONS

The main objective of this work was to study the duration of the low wind speed events and quantify the associated
uncertainties. Two approaches for the quantification were applied and discussed: IGD and DGI. These methods combine
the intensity of such events with their duration and their likelihood of occurrence (in terms of return periods). The applica-
tion of these techniques has as prerequisite the analysis of the suitability of the proposed tools defining their optimum
implementation.

The suitability of two different techniques for the distribution parameters estimation, namely, MoM and ML method,
was tested alongside with IGD method. The performed tests were based on the assumption that the outcome of the method
in neighboring grid points exhibits similar behavior. The results depict the spread of the two methodologies and support the
preference of ML.

The relationship between the magnitude and the duration of wind speed for different return periods is made by using IDF
curves. The upper and lower bounds are defined using the corresponding parameter estimation confidence intervals and
provide a measure of the uncertainties employed in the estimation. These are highly depended on the estimators and the
length of the dataset used for the application. In addition, a quantification study of the uncertainties associated with the
spatial distribution of the results of the IGD method was attempted by utilizing a probability analysis, based on the IDF
curves of neighboring grid points. These results provided the necessary information for the application of IGD method
uniformly in a large area. The illustration was made through different maps that depict the spatial distribution of the vari-
ables characterizing the IDF curves as well as the consequent hours of no energy production (wind speed below 3 m s�1)
with a statistical repeatability that was set to be 20 years long. The main outcomes can be summarized as follows:

• In the open seas, such low wind speed events can last up to 4–5 days.
• Near shore, these periods can reach up to 10 days and in certain cases even more.

Of course, these durations apply for our area under consideration that is the North Sea.
Subsequently, the presented study was focused on the examination of the performance of the GDI methodology by using

four different theoretical probability distributions in the application of AM method revealing the following:

Table III. Normalized differences between DGI and IGD results for five locations (20, 30, 40 and 50 years return period).

Duration Given Intensity

Gumbel GEV

20 years (%) 30 years (%) 40 years (%) 50 years (%) 20 years (%) 30 years (%) 40 years (%) 50 years (%)

a −9.8 −13.5 −15.9 −17.8 −13.5 −17.4 −20.0 −21.9
b −4.7 −8.5 −11.0 −13.1 2.4 −0.3 −1.9 −3.7
c −9.5 −15.4 −18.7 −21.3 −17.6 −24.9 −28.4 −31.9
d −18.6 −24.6 −28.2 −31.6 18.8 19.5 20.78 20.9
e −32.0 −35.1 −37.4 −39.3 33.0 52.1 67.2 80.4

Weibull Rayleigh

20 years (%) 30 years (%) 40 years (%) 50 years (%) 20 years (%) 30 years (%) 40 years (%) 50 years (%)

a −12.6 −18.1 −21.8 −24.6 0.0 −4.1 −7.0 −9.3
b −10.2 −15.9 −19.6 −22.7 1.2 −3.4 −6.5 −9.3
c −8.1 −15.7 −20.1 −23.7 5.8 −0.7 −4.5 −7.7
d −27.3 −34.5 −39.1 −42.9 −4.5 −10.5 −14.6 −18.5
e −38.1 −42.2 −45.2 −47.4 −5.9 −7.4 −9.1 −10.8

DGI = duration given intensity; GEV = generalized extreme value; IGD = intensity given duration.
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• A constant underestimation is observed when using Gumbel and Weibull distribution.
• The application of GEV distribution led to outcome of no particular pattern and large deviations.
• The best results were achieved by using the Rayleigh distribution. The highest difference reaches 18.5%, while in most
of the cases, the difference is lower than 10% and within the confidence intervals of both methodologies (IGD and
DGI).

It is worth mentioning that the exponentiality in DGI is higher as compared with IGD method, because for higher return
periods, the growing ratio is obviously smaller in the first case.

As a concluding remark, it should be noticed that the use of each method and the analysis provided for their comparison
give valuable information concerning the local climatic characteristics. The outcome of similar studies could be used to de-
fine the probability of occurrence concerning low wind speed events and their effects in the electricity network. The impact
of such cases in an economy based on wind energy could be critical. Other renewable energy sources, jointly exploited with
wind energy, may support the minimization of such drawbacks.
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