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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.
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Abstract 

The continuous rise of off-shore activities such as the development of wind farms requires a reliable operational support in order 
to minimize cost drawbacks and secure operations during the different stages of associated projects. One of the most important 
parameters for this kind of analysis is wind gustiness. The objective of the study is the development of a methodology for the 
surface wind gust estimation based on Numerical Weather Prediction Models and statistical post processing. The obtained 
method has been tested over the offshore west coastline of the United States and evaluated utilizing observational data from the 
NOAA’s buoy network.  
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1. Introduction 

The continuous rise of offshore and nearshore activities and the development of structures such as wind farms 
require the employment of state-of-the-art risk assessment techniques [1,2]. These techniques depend on 
environmental characteristics that affect the activities in question, such as wind speed and wave height. Risk analysis 
has a rather climatological character and sets the safety standards that should be followed on the structural design.  
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Beyond the risk analysis that is performed a priori, a reliable operational support is also needed in order to 
minimize cost drawbacks and human danger during the construction and the functioning stage as well as during 
maintenance activities. One critical parameter for this type of analysis, is the presence and magnitude of surface 
wind gusts, which is defined as the maximum observed wind speed over a period of time [3,4]. More than one gust 
definitions are proposed in the literature for wind gusts. For example, Extreme Operating Gust (EOG) and Extreme 
Coherent Gust (ECG) are described within the IEC 61400 standard for wind energy [5]. Moreover, several 
parameterizations and formulas are applied for their description and estimation.  

The purpose of this work is the development of a wind gust forecasting methodology combining a Numerical 
Weather Prediction (NWP) model and a dynamical statistical tool based on Kalman filtering. To this end, the 
methodology adopted in this work is based on a physical parameterization that takes into account all the processes in 
gust formation, namely Wind Gust Estimate (WGE) methodology [6]. This has been applied in a number of studies 
[7-12] with interesting and promising results and was implemented to function within the framework of the 
atmospheric modeling system SKIRON/Dust [13]. The model was run operationally for four selected months with a 
relatively coarse resolution (small resource demands). The results were evaluated using observational data from 
NOAA’s buoy network in the West Coast of the United States. Furthermore, for selected cases a Kalman filter 
methodology [14,15] was used for the removal of systematic errors, giving a more accurate estimation of forecasted 
wind gusts. 

2. Experimental design 

2.1. SKIRON/Dust Modeling System  

SKIRON/Dust is a modeling system developed at the University of Athens from the Atmospheric Modeling and 
Weather Forecasting Group [13,16] in the framework of National and European Union (EU) funded projects like 
SKIRON, MEDUSE (Mediterranean Dust Experiment), ADIOS (Atmospheric Deposition and Impact on the Open 
Mediterranean Sea), CIRCE (Climate Change and Impact Research) and most recently MARINA (Marine 
Renewable Integrated Application Platform). Recently the model was updated to include the Rapid Radiative 
Transfer Model– RRTMG [17-20]. Further details on the various model parameterization schemes and capabilities 
can be found in the above mentioned studies and the references therein. 

2.2. Parameterization of Surface Wind Gusts in SKIRON/Dust 

The processes leading to gust formation vary among boundary-layer turbulence, deep convection, mountain 
waves and wake phenomena [21]. These phenomena are difficult to be properly resolved by NWP systems [21,22] 
without the need of considerable computational resources. In addition, the subscale interactions are not always 
sufficiently described and generate errors or uncertainties. 

In general, gust forecasting is based on semi-empirical formulas derived from experimental studies [23-25], 
statistical models (using observations, ex. MOS - Model Output Statistics [26,27]) and physical parameterizations 
that take into account atmospheric conditions in the processes of gust formation.  

In this study an integrated methodology for the prediction of wind gusts is proposed based on a NWP model and 
a dynamical optimization statistical algorithm. The main gust forecasting scheme adopted is the WGE method as 
suggested by Brasseur [6]. According to this approach, the turbulent wind fields of the boundary layer can be 
considered as an overlay of a large number of eddies with different sizes. Larger eddies have the scale of the depth 
of the boundary layer, while the smaller ones rapidly dissipate through friction. This leads to momentum 
transportation both upwards and downwards. Under specific conditions, air parcels within eddies may deflect toward 
the surface, leading to gusty type wind fluctuations [7]. These processes have been incorporated in the 
SKIRON/Dust modeling framework, allowing the estimation of wind gusts at the surface.  
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Beyond the risk analysis that is performed a priori, a reliable operational support is also needed in order to 
minimize cost drawbacks and human danger during the construction and the functioning stage as well as during 
maintenance activities. One critical parameter for this type of analysis, is the presence and magnitude of surface 
wind gusts, which is defined as the maximum observed wind speed over a period of time [3,4]. More than one gust 
definitions are proposed in the literature for wind gusts. For example, Extreme Operating Gust (EOG) and Extreme 
Coherent Gust (ECG) are described within the IEC 61400 standard for wind energy [5]. Moreover, several 
parameterizations and formulas are applied for their description and estimation.  

The purpose of this work is the development of a wind gust forecasting methodology combining a Numerical 
Weather Prediction (NWP) model and a dynamical statistical tool based on Kalman filtering. To this end, the 
methodology adopted in this work is based on a physical parameterization that takes into account all the processes in 
gust formation, namely Wind Gust Estimate (WGE) methodology [6]. This has been applied in a number of studies 
[7-12] with interesting and promising results and was implemented to function within the framework of the 
atmospheric modeling system SKIRON/Dust [13]. The model was run operationally for four selected months with a 
relatively coarse resolution (small resource demands). The results were evaluated using observational data from 
NOAA’s buoy network in the West Coast of the United States. Furthermore, for selected cases a Kalman filter 
methodology [14,15] was used for the removal of systematic errors, giving a more accurate estimation of forecasted 
wind gusts. 

2. Experimental design 

2.1. SKIRON/Dust Modeling System  

SKIRON/Dust is a modeling system developed at the University of Athens from the Atmospheric Modeling and 
Weather Forecasting Group [13,16] in the framework of National and European Union (EU) funded projects like 
SKIRON, MEDUSE (Mediterranean Dust Experiment), ADIOS (Atmospheric Deposition and Impact on the Open 
Mediterranean Sea), CIRCE (Climate Change and Impact Research) and most recently MARINA (Marine 
Renewable Integrated Application Platform). Recently the model was updated to include the Rapid Radiative 
Transfer Model– RRTMG [17-20]. Further details on the various model parameterization schemes and capabilities 
can be found in the above mentioned studies and the references therein. 

2.2. Parameterization of Surface Wind Gusts in SKIRON/Dust 

The processes leading to gust formation vary among boundary-layer turbulence, deep convection, mountain 
waves and wake phenomena [21]. These phenomena are difficult to be properly resolved by NWP systems [21,22] 
without the need of considerable computational resources. In addition, the subscale interactions are not always 
sufficiently described and generate errors or uncertainties. 

In general, gust forecasting is based on semi-empirical formulas derived from experimental studies [23-25], 
statistical models (using observations, ex. MOS - Model Output Statistics [26,27]) and physical parameterizations 
that take into account atmospheric conditions in the processes of gust formation.  

In this study an integrated methodology for the prediction of wind gusts is proposed based on a NWP model and 
a dynamical optimization statistical algorithm. The main gust forecasting scheme adopted is the WGE method as 
suggested by Brasseur [6]. According to this approach, the turbulent wind fields of the boundary layer can be 
considered as an overlay of a large number of eddies with different sizes. Larger eddies have the scale of the depth 
of the boundary layer, while the smaller ones rapidly dissipate through friction. This leads to momentum 
transportation both upwards and downwards. Under specific conditions, air parcels within eddies may deflect toward 
the surface, leading to gusty type wind fluctuations [7]. These processes have been incorporated in the 
SKIRON/Dust modeling framework, allowing the estimation of wind gusts at the surface.  
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2.3. Kalman Filters 

Numerical weather prediction models often exhibit systematic errors in the forecast of certain meteorological 
parameters. This can be attributed to the difficulties of the models to handle sub-grid processes and to possible 
drawbacks of the used parameterizations. In this study the parameterization for the calculation of wind gusts is 
mostly affected by surface fluxes and the outcome may be exposed to systematic errors. The persistence of the 
mentioned errors could be traced back to the local characteristics of the sites under study.  

For dealing with the above mentioned problems, a polynomial Kalman filtering local adaptation model is 
proposed. The main goal is the estimation of the bias yt as a function of the model output mt (at the same time step): 

 
𝑦𝑦𝑡𝑡 =  𝑥𝑥1,𝑡𝑡 + 𝑥𝑥2,𝑡𝑡 ∗ 𝑚𝑚𝑡𝑡 + 𝑥𝑥3,𝑡𝑡 ∗ 𝑚𝑚𝑡𝑡

2 + 𝑥𝑥4,𝑡𝑡 ∗ 𝑚𝑚𝑡𝑡
3 + 𝑉𝑉𝑡𝑡         (1) 

 
where the coefficients (xi,t) are the parameters that have to be estimated by the filter and Vt the Gaussian 
nonsystematic error.  

Based on this, observations are combined with recent forecasts with weights that minimize the corresponding 
biases. More details can be found in [14,15,28-32]. 

In our case the adopted statistical model was found to be functioning satisfactory in linear mode and was 
applied directly to the wind gust as it is calculated from the model forecasts with a training period set to 24 h. The 
system was developed for the correction of three different subsets that correspond to the first, the second and the 
third day of the forecast (0-24h/ 24-48h/ 48-72h) respectively. The main advantage of the proposed methodology is 
the easy adaptation to the observations and the short training period needed for the application.  

2.4. Model Setup – Data used 

In order to evaluate the model estimated wind gust, a series of test runs were carried out. The model was 
integrated for a period of four months (July and October of 2014 and January and March of 2015) over an area 
covering a large part of the West Coast of the American continent and the neighboring part of the Pacific Ocean. 
The testing period was selected with two criteria: 1) including a month from each season, so to check potential 
deviations and 2) ensuring availability of data from the buoys. The computational domain is shown in Fig. 1. The 
horizontal grid increment was 0.07 degrees (approximately ~7km) while on the vertical 45 levels were used, 
stretching from the surface up to 20 km. Daily NCEP GFS operational fields (horizontal resolution of 0.5 degrees) 
were used for initial and lateral boundary conditions. The main reason reanalysis fields were not used in this study is 
that we needed to evaluate the capabilities of a gust forecasting system in operational mode. 

   

Fig. 1. SKIRON domain and the location of the six selected stations of the NOAA’s National Data Buoy Center with code numbers 46005, 
46025, 46028, 46047, 46086 and 46069.  
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The time step of the model was set at 20 sec and the radiation driver was invoked every 15 min. The model was 
modified to provide outputs every 10 minutes to correspond with the actual data available (as explained below) 
running in operational mode: For each day under study the model provided 72-hours forecasts. This allowed us to 
further examine the capabilities of the method applied for different forecasting horizons (24h, 48h and 72h 
forecasts).  

For evaluating the wind gust parameterization scheme, observations from NOAA’s National Data Buoy 
Center were used. The location of the buoys is illustrated in Fig. 1. These stations provide wind gust data as the 
maximum 5-second peak gust during the measurement hour, reported at the last hourly 10-minute segment. The 
specific buoys were selected according to data availability for the months under consideration.  

2.5. Statistical Methods of Evaluation 

A wide variety of forecast verification procedures exists and they all involve the study of the relationship 
between a forecast or set of forecasts and the corresponding observations of the predictant that in our case is the 
“surface wind gusts”. In the present work, the evaluation of the proposed methodology was based on five distinct 
statistical values: the Coefficient of Determination, the Root Mean Square Error, the Bias, the Mean Normalized 
Bias and the Nash-Sutcliffe model efficiency coefficient [33,34]. 

The first four are rather common indices. Concerning the Nash-Sutcliffe model efficiency coefficient, it varies 
from -∞ to 1, where 1 indicates the perfect match between observations and model predictions. A zero value 
suggests that the accuracy of the model is as good as the accuracy of the mean value of observations. 

3. Results and Discussion 

Using the model output and the wind gust data for the testing period (July and October of 2014, January and 
March of 2015) wind gust time series were evaluated against corresponding observations. An indicative example is 
presented in Fig. 2 for January 2015 for station 46028, (24h, 48h and 72h forecasts). 

 

 

Fig. 2. Time-series of buoy data (blue line) and model forecasts for 24h (red line), 48h (yellow line) and 72h (purple line) forecasts. 

It is apparent that the 1st day forecasts exhibits the best agreement between model results and data. The 2nd and 
3rd day forecasts deviate from the measured gusts, especially the minimum and maximum values. This is something 
that was expected since the errors in NWP forecasts usually grow with the length of the forecasting horizon. This 
example is a first indication that the methodology applied in the SKIRON/Dust model for wind gust calculations is 
solid and provides acceptable results. However, in order to reach more clear and consistent evaluation results of the 
applied parameterization, the distributions of the number of wind gust occurrences are presented in Fig. 3a-f.  
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statistical values: the Coefficient of Determination, the Root Mean Square Error, the Bias, the Mean Normalized 
Bias and the Nash-Sutcliffe model efficiency coefficient [33,34]. 

The first four are rather common indices. Concerning the Nash-Sutcliffe model efficiency coefficient, it varies 
from -∞ to 1, where 1 indicates the perfect match between observations and model predictions. A zero value 
suggests that the accuracy of the model is as good as the accuracy of the mean value of observations. 

3. Results and Discussion 

Using the model output and the wind gust data for the testing period (July and October of 2014, January and 
March of 2015) wind gust time series were evaluated against corresponding observations. An indicative example is 
presented in Fig. 2 for January 2015 for station 46028, (24h, 48h and 72h forecasts). 

 

 

Fig. 2. Time-series of buoy data (blue line) and model forecasts for 24h (red line), 48h (yellow line) and 72h (purple line) forecasts. 

It is apparent that the 1st day forecasts exhibits the best agreement between model results and data. The 2nd and 
3rd day forecasts deviate from the measured gusts, especially the minimum and maximum values. This is something 
that was expected since the errors in NWP forecasts usually grow with the length of the forecasting horizon. This 
example is a first indication that the methodology applied in the SKIRON/Dust model for wind gust calculations is 
solid and provides acceptable results. However, in order to reach more clear and consistent evaluation results of the 
applied parameterization, the distributions of the number of wind gust occurrences are presented in Fig. 3a-f.  
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Fig. 3. Histograms for the number of occurrences of each wind gust bin for the observations (purple) and the corresponding model results for 24h 
(blue), 48h (green) and 72h (yellow) forecasts. 

Moreover, a number of statistical scores were calculated for the entire simulation period and for the three 
forecasting days [34]. The results are presented in Table 1. This analysis proves that the model manages to capture 
the wind gust distributions in most of the cases. SKIRON performs well for the first forecasting day, with all 
statistical scores deviating as the forecasting horizon increases. For the second and third day forecasts it is 
increasingly difficult to accurately describe wind gusts due to truncation and parameterization errors. Generally in 
operational forecasting the model accuracy is limited both by the rapid divergence of nearby initial conditions and 
by deficiencies in the core model [22], thus deviating more from the actual conditions, as the forecasting horizon 
increases. An exception of this pattern is recorded in the statistics of St46086. However, the magnitude of the 
increase in the accuracy is not statistically significant and can be attributed to the limited length of the timeseries. 

The best statistical scores for the first day forecasts are reached in Station 46028 with Bias and RMSE of -0.471 
and 2.554 respectively. The Normalized Bias is also close to 0 (-0.066) and the Nash-Sutcliffe coefficient closer to 
the ideal value of 1 (0.656). This indicates that the model was able to properly capture the atmospheric parameters 
needed for the wind gust parameterization leading to acceptable results. At the same time, the model forecasts that 
correspond to the offshore Station 46005, exhibit a satisfactory performance according to the statistical indices of 
Bias (0.224) and RMSE (2.45). The Normalized Bias and Nash-Sutcliffe coefficient have values of 0.026 and 0.594 
respectively for the 1st day of forecasting period. It is interesting to note that for buoy stations located close to the 
shore the model underestimated the measured wind gusts. This can be attributed to the representation of the 
coastline and topographical variation of the area, the grid structure of the NWP model and the air-sea-land 
interaction processes. On the contrary, over open sea areas the system overestimates the buoy observation. This may 
be due to the drag coefficient estimation through the parameterizations implemented in the modeling system and to 
problems associated with buoy measurements especially in high wave conditions. 
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Contrary to the overall good performance of the proposed modeling system, Station 46069 exhibits low 
statistical scores with a high RMSE value reaching 5.34 and a bias of -4.265 for the first day forecast. Accordingly, 
the normalized bias is 0.54 and the Coefficient of Determination is the lowest at 0.369. Due to these deviations from 
the actual wind gust data, a Kalman filter methodology was applied in the model output as described in section 2.3. 
Based on the corrected model data, the wind gust distributions are presented in Fig. 4a-c for the 1st, 2nd, and 3rd day. 
 

 

Fig. 4. Histograms for the number of occurrences of each wind gust bin for the uncorrected model data (blue), the observations (teal) and the 
corrected model results (yellow) for 24h (a), 48h (b) and 72h (c) forecasts. 

It is obvious that the use of the Kalman filter methodology improved significantly the forecasted results. The 
statistical scores were recalculated for the three forecasting days (Table 2). The Bias has improved by 90% for the 
1st day, by 89% for the 2nd day and by 88% for the 3rd day. This is something expected, since the Kalman filter 
methodology is mainly a bias correction technique. Moreover most of the other statistical figures have also been 
improved considerably. The Nash-Sutcliffe coefficient was improved by 109% for the 1st day, by 86% for the 2nd 
day and by 77% for the 3rd day. The RMSE decreased by 25% for the 1st day, by 29% for the 2nd day and by 27% 
for the 3rd day. Finally the Normalized Bias improved by 12% for the 1st day and by 9% for the 2nd and the 3rd 
day. The only index with no real improvement was the coefficient of determination. That is something rather 

Station 
Forecast 
Day R2 RMSE Bias 

Normalized 
Bias 

Nash-
Sutcliffe 

St46005 
1st 0.743 2.450 0.224 0.0263 0.594 
2nd 0.544 3.337 0.438 0.078 0.248 
3rd 0.573 3.365 0.853 0.124 0.235 

St46025 
1st 0.486 2.322 -1.541 -0.291 -0.031 
2nd 0.409 2.495 -1.470 -0.273 -0.191 
3rd 0.362 2.544 -1.511 -0.274 -0.238 

St46028 
1st 0.768 2.554 -0.471 -0.066 0.656 
2nd 0.699 2.954 -0.316 -0.015 0.541 
3rd 0.646 3.176 -0.307 -0.001 0.469 

St46047 
1st 0.451 3.258 -1.848 -0.225 -0.001 
2nd 0.409 3.314 -1.683 -0.182 -0.035 
3rd 0.338 3.476 -1.583 -0.138 -0.138 

St46086 
1st 0.615 2.369 -1.901 0.318 -0.146 
2nd 0.623 2.246 -1.741 0.272 -0.056 
3rd 0.623 2.219 -1.642 0.263 -0.012 

St46069 
1st 0.369 5.340 -4.265 0.540 -0.800 
2nd 0.321 5.375 -4.205 0.562 -0.883 
3rd 0.269 5.436 -4.166 0.569 -0.944 
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expected, since the application of the filters tends to create phase shifts in the timeseries that may lead to weaker 
linear correlation. It is also noticeable that by using Kalman filters we were able to improve wind gust forecasts for 
all three days that is considered as important for operational systems. 

The same methodology was applied to the station 46086, in order to examine the validity of the method in cases 
where the model does not deviate much from the measurements. The corresponding statistical scores are presented 
in the same Table (2). There is a noticeable improvement concerning the Bias. Accordingly RMSE decreased by 
27%, 26% and 25% for 1st, 2nd and 3rd day forecasts respectively, results that underline a decent improvement. At 
the same time, the Nash-Sutcliffe coefficient improved significantly for all forecasting periods. Finally, the 
Normalized Bias improved as expected while the coefficient of determination decreased (~21-34%) for the reasons 
discussed in the previous case.  

The above analysis indicates that the applied methodology can be a valuable tool for forecasting surface wind 
gusts for at least a three days forecasting horizon.  

Table 2: Updated statistical scores between measured wind gusts and the corrected model results for 1, 2 and 3 days forecasts for buoys 46069 
and 46086. 

 

4. Concluding remarks 

In this study an advanced technique for estimating surface wind gusts is proposed by combining dynamic and 
statistical techniques. Based on the work of Brasseur [6], the SKIRON/Dust limited area model has been modified to 
provide wind gust forecasts, addressing the increased needs for reliable extreme weather forecasting. The model was 
run for a period of four months in forecasting mode and several statistical scores were calculated for three 
forecasting days, namely 24h (1st day forecasts), 48h (2nd day forecasts) and 72h (3rd day forecasts), using data from 
the NOAA’s National Data Buoy Center. In addition a dynamical statistical methodology is proposed to correct the 
model results by using Kalman filters.  

 In most of the evaluation cases the system had a successful performance according to various calculated 
statistical indices. This was the case for all three forecasting periods, with 1st day forecasts giving the best results in 
the majority of the test runs. For locations close to the coastline the model underestimated the measured wind gusts 
mainly due to the poor representation of land-water boundaries and therefore the associated processes.  

A Kalman filter optimization system has been applied in order to correct the model forecasts with very 
promising results. The procedure improved the statistical scores significantly proving that it can be used in 
operational wind forecasting systems. 

Concluding, we can note that a combination of a NWP wind gust estimating system and a Kalman post process 
filter can be used in forecasting facilities that support offshore wind farms and other installations especially for the 
simulation extreme weather events. 
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 Forecast day R2 RMSE Bias Normalized Bias Nash-Sutcliffe 

Station 
46069 

1st 0.277 3.82 -0.419 0.474 0.079 

2nd 0.227 4.148 -0.438 0.509 -0.122 

3rd 0.194 4.302 -0.467 0.519 -0.217 

Station 
46086 

1st 0.467 1.720 0.244 0.126 0.391 

2nd 0.476 1.665 0.137 0.079 0.419 

3rd 0.492 1.671 0.101 0.071 0.426 
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expected, since the application of the filters tends to create phase shifts in the timeseries that may lead to weaker 
linear correlation. It is also noticeable that by using Kalman filters we were able to improve wind gust forecasts for 
all three days that is considered as important for operational systems. 

The same methodology was applied to the station 46086, in order to examine the validity of the method in cases 
where the model does not deviate much from the measurements. The corresponding statistical scores are presented 
in the same Table (2). There is a noticeable improvement concerning the Bias. Accordingly RMSE decreased by 
27%, 26% and 25% for 1st, 2nd and 3rd day forecasts respectively, results that underline a decent improvement. At 
the same time, the Nash-Sutcliffe coefficient improved significantly for all forecasting periods. Finally, the 
Normalized Bias improved as expected while the coefficient of determination decreased (~21-34%) for the reasons 
discussed in the previous case.  

The above analysis indicates that the applied methodology can be a valuable tool for forecasting surface wind 
gusts for at least a three days forecasting horizon.  

Table 2: Updated statistical scores between measured wind gusts and the corrected model results for 1, 2 and 3 days forecasts for buoys 46069 
and 46086. 
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