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Abstract. In this paper we present an analytical evalu-
ation of the perturbations to mesoscale atmospheric
flows induced by thermal inhomogeneities in the con-
vective boundary layer. We study the time evolution of
these perturbations as a function of the intensity and
of the horizontal and vertical scales of the diabatic
forcing. The problem is approached using Laplace
transform theory for the time behavior and Green
function theory for the spatial structure. Results show
that the growth of the atmospheric perturbations
closely follows the growth of the convective boundary
layer; the transient being characterized by a number of
inertia-gravity oscillations of decreasing intensity. The
vertical scale is determined by the depth of the convec-
tive boundary layer; and the horizontal scale is
determined by the local Rossby deformation radius.
Sinusoidally periodic thermal forcing induce periodic
atmospheric cells of the same horizontal scale. The
intensity of mesoscale cells increases for increasing
values of the wave number, reaches its maximum value
when the wavelength of the forcing is of the order of
the local Rossby radius, and then decreases as the
wavelength of the forcing decreases. However, because
of the destructive interference between mesoscale cells,
the intensity of the vertical velocity is only a weak
function of the wave numbers, for large wave numbers.
Periodic square wave surface thermal inhomogeneities
are more effective than sinusoidal waves in generating
mesoscale cells, i.e. the intensity of the flow is generally
stronger.

Introduction

Subgrid-scale parameterization is of considerable impor-
tance in regional and larger scale models because these
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models seldom have more than few grid points within a
Rossby radius, yet the mesoscale flow driven by thermal
horizontal inhomogeneities in the Convective Boundary
Layer (CBL) may be significant. Therefore mesoscale ef-
fects need to be introduced in parametric form into those
large scale models.

Terrain in the real world is almost never uniform: for
instance, in natural areas there may be a variety of vege-
tation types and patches of vegetated or unvegetated ar-
eas which can modify the mesoscale atmospheric flow.
Horizontal thermal inhomogeneities in the planetary
boundary layer are a well known source of mesoscale
circulation systems. Thermally-forced mesoscale systems
such as land and sea breezes, mountain-valley winds, and
urban heat island circulations have been the subject of
many studies (e.g., see references in Pielke, 1984, and
Pielke and Segal, 1986). Some thermally-generated
mesoscale circulations are due to horizontal inhomo-
geneities in ground wetness, vegetation cover, Snow cover,
cloud cover, etc. (e.g. Zhang and Anthes, 1982; Garrett,
1982; Yan and Anthes, 1988; Segal et al., 1988). In addi-
tion, there are also anthropogenic modifications of soil
and vegetation, such as irrigated or non-irrigated fields,
crops at different stages of development, inhabited areas,
etc. (Hanna and Swisher, 1971; Anthes, 1984; Segal et al.,
1984 Segal et al., 1989). Such thermal inhomogeneities
may extend from few square meters to hundreds or even
thousands of square kilometers (Wetzel and Chang, 1988).
A number of observational, numerical, and analytical
studies have been made of these physiographically forced
circulations (Abbs and Pielke, 1986; Mahfouf et al., 1987;
Mahrer and Pielke, 1977; McCumber and Piclke, 1981;
Zhang and Anthes, 1982; Yan and Anthes, 1988).

Since the fine horizontal structure of the terrain ther-
mal inhomogeneities is not usually resolved in regional
and large scale non-linear numerical models, it is impor-
tant to give an analytical quantitative evaluation of their
impact on the atmospheric flow. In this paper, we present
an analytical theory for resolving the atmospheric pertur-
bation and for evaluating the vertical velocities, resulting
from thermal inhomogeneities in the absence of large
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scale flow (or in presence of very weak large scale flow) in
the limit of a linear theory.

Governing equation and evolution of the horizontal and
vertical scales

From Rotunno (1983) and Dalu and Pielke (1989) the
linearized two-dimensional primitive equations describ-
ing thermally-forced atmospheric flow, in the absence of
a large-scale wind, can be reduced to a single equation for
the streamfunction:

O e 2\ 3
[(a +A) +N jlé?w+|:(a +A) +fz]?l!/

__9%, (1)

Ox
where [ is the Coriolis parameter, N is the Brunt-Vaisila
frequency, and i~ ' is the damping time due to friction,
i.e. the persistency of the mesoscale flow when the diabat-
ic forcing vanishes. In this paper we use the following
values for these parameters:
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Q is the diabatic buoyancy source,
0=_9 For(x)q(1)
0c,® h
uniformly distributed through the depth h of the CBL, as
indicated by the Heaviside function He in Eq. (3).

Fyr(x)q(t) is the heat flux at the ground, which has a
horizontal distribution r(x) and a time behavior g (t).

3)
He(h—z)=Q,r(x)q(t) He(h—z)

Non-dimensional time variables

We first define the characteristic time scale of the system
T, and we use it to non-dimensionalize time:

1

- _, [f*+4i?

T decreases with increasing latitude and friction (friction
keeps the time scale T finite at the equator). We introduce
the Laplace transform, defined as

f(s)=L{f(x)}
LL ' {f (@)} =f (v).

We recall also that:

=0(10%)s t=tTY; (4)

If(f) exp(—st)dr and

f(t>w)=lim s (s) (5)
s=0

ie. f()xsf(s)

when s<1 and t=1,>1=1t=t,>T. (6)

t, is the time when an almost stationary state is reached;
t, is larger than the characteristic response time, T, of the
system.

Evolution of the vertical and horizontal scales,
and the non-dimensional coordinates

We recall the relation between Q and h (Green and Dalu,
1980):

r(x]h(t}—r(x} -IdIQ(IJ ho =

7

The Laplace transforms of the CBL height, i and the
non-dimensional vertical coordinate, #, are:

4q(s) . _z
ﬁ=ho——s——, ﬁ*ﬁ- (8)

The Laplace transforms of the horizontal scale, R, and the
non-dimensional horizontal coordinate, &, are:
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The horizontal scale evolves in time as:
tdt’ h(t—t
R(t)=R, j' T % exp(—Ait) Jo(f1);
0 0
N
R,=h (10)
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Friction acts to reduce the horizontal scale R, (the Ross-
by radius) and exponentially damps the intertial oscilla-
tions described by the Bessel function, which provides
some damping even without friction, Eq. (10).

The evolutions of h(r) and R(r) are shown in Fig.1a
for a sinusoidal in time thermal forcing, and Fig.1b for
an impulsive thermal forcing; for different values of fric-
tion. In both cases, the growing time of the boundary
layer is about half a day, t,~day. R grows, as the
convective boundary develops, through inertia-gravity
oscillations. The relative amplitude of these waves is
Oexp(—At) Jo(f1)]; ie. the inertia-gravity oscillations
decay as a Bessel function or faster (exponentially) in the
presence of friction, and their amplitude is usually negligi-
ble when t >1,~ 0.5 day.

Local Rossby radius

When two adjacent regions both experience a warming of
similar intensity, Q in Eq. (3), is given by

0=0Q0q(t)[He(x) +(1—y) He(—x)] He(hy—2), (11)

with y <O (1), indicating that the two regions have similar
heating; then the difference in N2 between the two regions
is of the order or

N?=|y|N2. (12)

R, has been replaced by its local value, R, , equal to

N2 +22\'2 N
R ~hy —L—.

0, h (f2_+_; ) hU (—f2+).2 {13)
Because of the reduction of N? (Eq.12), the horizontal
scale (Eq. 13) is correspondingly reduced, while the verti-
cal scale remains of the order of h(t). The aspect ratio

uy
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Fig. 1a, b. The evolution of the Rossby radius for different values of
friction: a for a sinusoidal forcing; h (1) =h, (1 —cosw 1)/2 is given
in the insert; b for a convective boundary layer asymptotically
growing to hy; h(t) =h, (1 —exp(—1t/1,) is given in the insert

becomes:
2 22 1/2
A=(f2+ 2) .
N} +2

Atmospheric cells, generated by thermal inhomogeneities
having a wavelength smaller than twice R, , will interact
with each other.

Non-dimensional equation for the streamfunction

Using the definitions stated above, the streamfunction
Eq. (1) can be written as:

o2 02
ser b+ Wﬁbmma%é. (14)
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The variables with the tilde are non-dimensional; the
variables with the hat are their Laplace transforms.

Boundary conditions and Green functions

We assume that the terrain is flat and that the vertical
velocity vanishes at the ground:

W(XsZ=0‘f)=‘-"’(aﬁ=0“f)=W‘(aﬁ=0,5)=0- “6)

When the operator in Eq. (14) is elliptic, the Green func-
tion is:

L [(E— E')2+(a+ﬁ')2]“2_ )

=" Eerva-ny
The perturbation is trapped, i.e. vanishes at co:
W (€ =00, f=00,5)=0. (18)

When the operator in Eq. (14) is hyperbolic, the Green
function is:

gy = (He(1—'—|E—~ &) —He(h +i'— |E-E'N)]. (19)

The perturbation is a propagating wave.

Important note. When the operator is elliptic, the intensity
of the perturbation decays as the logarithm of the ratio
between distance from the source (&',4’) and from its
mirror image (¢, —#’), Eq. (17) (the perturbation is con-
fined in the neighborhood of the source and of its image).
The presence of poles in inverting the solution in the
transformed space, gives propagating inertia-gravity
waves vanishing at oo in the physical space; the related
solutions are in terms of Bessel and trigonometric func-
tions (Dalu and Pielke, 1989).

The case when the operator becomes hyperbolic (non-
vanishing propagating waves) under sinusoidal forcing
has been treated by Rotunno (1983), and by Dalu and
Pielke (1989). Furthermore, Sun and Orlanski (1981) have
shown that some modes can become unstable for some
values of the pulsation and the wave number.

Atmospheric response

The atmospheric response is given by the inverse Laplace
transform of

V=004 B(p) A, (&) a=00d(s) B(p) A, (& N);
w=0,4()B(p) A, (& 1);

T. p_1 2

Ea, b= E[Q-N Wl (20)

v=—
where
G(E—E’,ﬁ)=gdﬁ’ﬁlf~f’.ﬂ-ﬁ')‘

The integration limit, A, is the Laplace transform of h. In
addition,

A= a2 6E-2n TS
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D is the horizontal region with non-zero forcing. When D
is finite, H can be written also as:

s O
A=~ [dEF(E) & G(E—¢&,h),
D
where:
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In physical units we have:
Quh
Y(x,z0)= ﬁ (22)

~{q(t)* {exp(—Ait) - {Jo(ft) * H,(x,2,1)}}},

where { * } denotes the convolution product in time. The
time-dependent transfer functions can be written in terms
of Bessel functions, trigonometric functions, and expo-
nentials (see Dalu and Pielke, 1989). The time evolution is
then reconstructed through the use of the Faltung theo-
rem (Fodor, 1965). The resulting behavior is similar to the

one shown in Fig.1 for the Rossby radius; i.e. the flow
evolves through a series of damped inertial-gravity waves,
the oscillation are not generally in-phase at different loca-
tions. Since the flow decays almost exponentially, i.e. with
an e-folding distance equal to R, as shown in Fig. 2, the
structure function can be approximated as:

G¢(E.ﬁ)%6¢(f=0,ﬁ) exp(—lfl). (23)

Stationary state. When t St and r(x) = He(x), we have:
. h N h?

I=YoGy(n) with o= orele T g

The flow from Eq. (24), shown in Fig. 3 a, is approximate-
ly contained in a region 2R, by 2 h,. The horizontal and
the vertical momentum components are:

W Nhy, R,

u=u,G,(&n) with u,= = = = (25)
0 = h, T 2 2T
: h h
w=w,G,(&n) with wy=u, R—“ = % = 2—“ (26)
0 0
z x
with p=—; ¢&=—.
¢ Mo R,

From Egs.(25) and (26) we deduce that:

O _ofl). .2 _o(™\_p( L

E—O(?)‘ uax-O(RD)—O(ZT) and
0 Wo 1

va:=0(e) =0 (37)

i.e. the advection terms are smaller than the linear term,
but of the same order; thus the linear theory underesti-
mates the perturbations predicted by a nonlinear theory.
For a quantitative evaluation of the nonlinear contribu-

20 1 '

Fig. 2. a Streamfunction,  (10* m?/s), at
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z=h, versus the horizontal distance from
the thermal discontinuity. The function

Y (x=0.0, z=hy) exp (—|x|/ry) is plotted to
show that the intensity of the flow decays
essentially exponentially with an e-folding
distance equal to the Rossby radius (broken
line). b Vertical profile of ¢ at x=0.0
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Fig. 3. a Streamfunction isolines for a discontinuous change of heat
flux at x=0.0 at 40° of latitude (A=w); hy=1000m, Ay =0.2
(10* m?/s). b Streamfunction isolines when one region experiences
a heat flux 50% less intense than the adjacent region, i.e. y=0.5

tion see the paper by Pielke et al. (1991). The along-front
momentum component is:

t
vz—i" u. (27)

The temperature perturbation is:
0=He(x)He(h,—2z)(h,—2z) 0O,
—[He(—x)+He(x)He(z—hy)] 4, 0,. (28)

Here we refer to heated land but the temperature pertur-
bation will be positive whenever a CBL occurs due to
superdiabatic lapse rate at the surface (e.q. over warm
water patches also). 4. is the vertical displacement of the
air parcels:

t
4.(x,2,t) & Eﬂ w(x,z,1,).

When the flow results from adjacent differentially heated
regions in Eq.(11), the intensity of the mesoscale flow
reduces to:

'1’0? =7¥,. (29)

The flow intensity is proportional to y. If we set the
threshold for the generation of significant mesoscale flow
at 20%, the influence of the mesoscale flow need to be
included (explicitly or in parametric form) when:

Vo, >0.20 = »>0.20.
Yo

We will refer to this measure as the resolution threshold
suggesting that, for y<0.2, the influence of the spatial
heterogenity can be ignored. The flow shown in Fig. 3b
refers to the case when y = 0.5in Eq. (11), i.e. the upstream
region experiences 50% less heat than downstream of the
thermal discontinuity. The mesoscale flow shown in
Fig. 3b is less intense (from Eq. (13)), and is less extensive
than the flow shown in Fig. 3a.

Atmospheric response to periodic thermal forcing

Throughout this section, in evaluating the averages and
the convolution integrals along the horizontal coordinate

we make use of the fact that the intensity of the flow
decays exponentially with an e-folding distance equal to
R, (Fig. 2):

| x| _ W
'|b ﬁl"og(z) exp ( Ro) we ax (30)
g4(2) =G, (x=0.0,2)
i EANE: 2 —h? i Ll z+h,
T 2 ho z* 2n  |z—hy|

When the diabatic heating is sinusoidally periodic over
the entire horizontal domain, with L, as wavelength:

. 2R
0- Qoq(t)He(h—A)[ + Lsin (’";0")]; me 2R,

m

then the streamfunction is given by, (31)
G u’lo :.i mndx cos mm(x—x’) G, (¥, 2)
- a0 RO Ro

mmn mmnx
=$09@ (r iy cos( i ) (32)

Here m is the number of wavelengths in a 2 R, distance (m
need not be an integer). If we set the resolution threshold
at 0.20:

Yo mn

= > 0. —
A T
Thus the mesoscale flow need to be included (explicitly or
in parametric form) when 0.4 <m<1.2. The intensity of
the atmospheric response as a function of m is shown in
Fig. 4a. The intensity of the mesoscale cells decreases

monotonically for m large (shown in Fig. 5). The vertical
velocity is:

o mn)> . [mnx
w——a— o ()( )2+1 n(Ro). (33)

When m> 1, the vertical velocity is a weak function of m
(Fig. 4c). When the forcing is a periodic square wave over
the entire horizontal domain, with L, as wavelength:

+l i —4—sin mnux\ |
2,=13.. hm R, '

>020 = 04<m<1.2.

1
0=Qua(0 He(h=2| 3

2R,
g — 4
L’ (34)
then the streamfunction is given by
PROREATGRNe Ve AL ORI ¢ . 1 S
[ A ARV BT (mﬂﬂ)2+1 \ Ry, /)

If we set the resolution at 0.20:

Vo, x4 mnn
2B LR T R

= 005<m<2.2.

Thus, for square heating patches, the mesoscale flow
needs to be included (explicitly or in parametric form)
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Fig. 4. a Intensity of the flow, induced by a sinusoidal periodic
forcing, versus horizontal wave number; b same as a but for a
periodic square wave; ¢ vertical velocity for a sinusoidal periodic
forcing; d vertical velocity for a periodic square wave; e average
vertical mesoscale heat flux for a sinusoidal periodic forcing;
f average vertical mesoscale heat flux for a periodic square wave

when 0.05 <m<2.2. The intensity of flow as a function of
m for a periodic square forcing is shown in Fig. 4b, and
the circulation cells are shown in Fig. 6. In general, the
intensity of the flow is larger for a periodic square forcing
than for a sinusoidal forcing; the difference is larger at
small m. At large m the mesoscale cells interact destruc-
tively, reducing the intensity of the flow. The vertical ve-
locity (Fig. 4d) is:

oy
“_"6;
e © 4 (mnm)® . (mnnx
_wog(z)nzlzl.‘ﬁ(mnn)2+1sm( R, ), (36)
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Fig. 5. Mesoscale atmospheric cells for four values of the horizontal
wave number for a sinusoidal periodic forcing, Ay = 0.2 (10* m?/s)
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Fig. 6. Mesoscale atmospheric cells for four values of the horizontal
wave number for a square wave periodic forcing, A = 0.2 (10° m?/s)

and the temperature perturbation is:

0=He(h,—z) |:% gz _;_ E isin (mnnx)]

n=1,3.. N7 R,

He(hy—2)[1 1 = 4
(ho—2)@,— 1 — W=D~ L 2 A
(ho—2)8, { 2 [2+2,=§,...nn

o (mnmx to
sin (%Ro )]}w@, 5" (37)
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Conclusions

Making use of the theory developed by Dalu and Pielke
(1989), we study the atmospheric response to spatial gra-
dients of diabatic heat fluxes in the convective boundary
layer. Results show that, for sudden changes, the atmo-
spheric perturbation decays exponentially with an e-fold-
ing distance equal to R, . Square wave periodic surface
thermal inhomogeneities generate stronger atmospheric
cells than sinusoidally distributed inhomogeneities. The
intensity of the flow increases as m increases, reaches its
maximum when the wavelength is of the order of R, and
then decreases linearly for large m. Thus significant atmo-
spheric cells are generated by periodic, thermai inhomo-
geneous patches only when the wavelength is a significant
fraction of R, . It is therefore unnecessary to explicitly
resolve in numerical models thermal inhomogeneities on
scales much smaller than R, (e.g. as assumed in Avissar
and Pielke, 1989). However, since at high m, the vertical
velocities are significant and almost constant, mesoscale
heat fluxes may be significant; these subgrid-scale effects
need to be introduced in parametric form in LAM and
GCM, which have only few grid points within a Rossby
radius. Solutions for the atmospheric perturbations in the
presence of light ambient winds can be derived from the
theory presented in this paper, and an extension of our
theory in this direction is desirable. When the ambient
flow is strong, the pattern of the perturbations is quite
different (Hsu, 1987; Robichaud and Lin, 1989); however,
the intensity of the mesoscale perturbation is negliglible,
since it decays as 1/U 2.
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