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Summary

The calculation of rocky surface temperature encounters the
problem of unrealistic results due to its large changes at the
interface where the energy balance equation is applied. In
order to avoid this, we have modified the ‘“‘force-restore”
method into a self-consistent procedure for simultaneous
determination of both surface and the deep ground
temperature. The approach is applicable to any celestial
body where external radiation can be represented by an
arbitrary periodic function. The method is tested with Earth
based infrared observation on lunar surface temperature and
it showed a high level of accuracy and a rather fast
convergence of procedure.

1. Introduction

Rocky surfaces are often the dominant type of
ground on the interface between the celestial
objects and space or the atmosphere if it exists.
That is the reason why, in the atmospheric and
other numerical models, the calculation of rock
surface temperature should be made with con-
siderable attention. Calculation of the surface
temperature, using the energy balance equation
at the interface, is more complicated for the rocks
than for other solid materials, due to their
particular thermal and physical properties.

However, the use of the energy balance
equation, for calculating the surface temperature
may lead to unrealistic results because of its large
changes at the interface where the equation is
applied. In order to avoid that, some authors
commonly use another approach, the so called
“force-restore” method (Stull, 1988), for calculat-
ing the solid surface temperature. On the other
hand, a very limited number of papers in planetary
space science (Stimpson and Lucas, 1972), (Jones
et al., 1975), as well as in geophysical sciences
(Arseni¢ and Mihailovi¢, 1995; MihailoviC et al.,
1996; Arsenié et al., 1997; Arseni¢ and Mihai-
lovi¢, 1998), is devoted to the rock surface
temperature calculation problem.

This paper deals with a modification of the
“force-restore’” method regarding the estimation
of the deep ground temperature 7; and corre-
sponding procedure for the numerical integration
of the ““force-restore” equation. We have shown
theoretically that the suggested procedure is
applicable for calculating the surface tempera-
ture of any planet or celestial object which has
complicated diurnal course of radiation repre-
sented by an arbitrary periodic function. Verifi-
cation of the proposed method is made by
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comparing our calculated values for the surface
temperature of the Moon to values available from
the Earth-based infrared measurements.

2. Description of the method

The “force-restore’” equation is derived from the
energy balance equation (Bhumralkar, 1975) and
according to Stull (1988) has the form:

T,

79 = R(Tg) - H(Tg) - L(Tg)

(Y m) 0

where: C, is the surface heat capacity, T, the
surface temperature, R(7,) the net radiation,
H(T,) the sensible heat flux, L(T,) the latent heat
flux, w the frequency of diurnal variation of the
surface temperature, C the volumetric heat
capacity, A the thermal conductivity and 7, the
deep ground temperature which can be estimated
either from some prognostic equation or using
another method. This equation is applicable for a
broad range of the underlying surfaces using an
implicit backward scheme for its numerical
integration. The basic difference from the original
work of Bhumralkar (1975) is that in his approach
one does not derive deep ground temperature, but
it is taken as a daily average of the surface
temperature (more precisely, the temperature of
1 cm thick surface layer). Another difference is
the interpretation of terms, because what one
usually accepts as ‘“Bhumralkar equation™ is
obtained after one introduces the temperature as
the simple harmonic function of time.

However, Eq. (1) gives reasonable results only
in the case when the solid medium contains much
liquid water (Mihailovi¢ et al., 1998). Then the
first three terms on the right hand side of Eq. (1)
are significantly greater than the last one,
particularly the term representing the latent heat
flux. It means that the error in calculation of the
last term, so called ‘““force-restore” term, will not
affect the final result significantly, because that
error will be overshadowed by the comparatively
small change in the latent heat flux. Otherwise, if
the underlying surface is a rock, the latent heat
flux in Eq. (1) may be neglected. Taking into
account this fact we will try to calculate the
“force-restore” term more generally for any

natural solid medium. It will be done by a
modification of the “force-restore” method which
consists of a new estimation of the deep ground
temperature 7, and corresponding procedure for
the numerical integration of Eq. (1).

Since the rocky ground has a high level of
homogeneity we can assume that the diurnal
course of the rock temperature at any depth has
the same shape as the diurnal course at the
ground surface. Also, it is shifted in time having
the amplitude which is smaller than the ground
surface temperature amplitude. In order to show
it, let us assume that the ‘“‘diurnal’ variation of
the surface temperature has the form:

T(t) = T, + ToF (wr) 2)

where F(wt) is an arbitrary periodic function
with period T = 27/w. This function can be
expanded in Fourier series:

To(t) =T, + iAn cos(nwt — €,) (3)

n=1

Following Carslaw and Jaeger (1959) (Section
2.6 Egs. (17) and (18)), the temperature at depth
d can be represented as the following series:

wC

To(td) = T+ Age V5
n=1

- COS <nwt —&p — dﬁ\/%) (4)

Usually, one retains only the first term in the
Fourier series, i.e. the surface temperature is
assumed to have simple harmonic form (Bhu-
marlkar, 1975, Eq. A2):

To(t) = Ts + Tp cos(wr) (5)
leading to

,d\/E wC
To(t,d) = Ts + Toe “V2cos| wt —d VA

(6)

Correspondingly, at the depth d, the daily tem-

perature variations will be e times smaller than

they are at the rocky surface. Here ¢ is referred to
as the phase shift given by ¢ = d(wC/2))"/%

Using the foregoing assumptions we can

calculate the deep ground (rock) temperature 7,
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in the following way. In the first iteration we
assume that 7y, representing the temperature at
a certain depth d, has a constant value i.e.,
Tfiof“ " = const.. Here, f, is the initial time of
integration, At is the time step, i is the number of
time steps, while the second character in the
subscript indicates the number (order) of itera-
tion. Further, using this value of TC’;’T’AI and
applying an implicit backward scheme to Eq. ( g
we calculate the rock surface temperature T’°+l
as the first iteration. So, in (n + 1)th 1terat10n the
diurnal course of the deep ground temperature,
Tf;’:ﬁt, is calculated from the previously calcu-
lated diurnal course of the rock surface tempera-
ture, Té’,‘j,j kAL g

to+iAt to+kAt <1 — ew> X to+mAt —
T =\ T — N Z Ten ¢
m=1
™)

where N is the total number of time steps during
one day of integration, while the number of time
steps k in T’0+kA’ depending on the phase shift ¢
of T; due to T is related to number of the actual

time steps i in T"’*’?’ as

[ — int ﬂ i > int ﬂ
i — 27 27 (8)
B .. (¢N <,0N
N +i—int I < int
2m 21

This procedure is applied until the condition

) 1/2
9)

is reached, where p is a chosen small value.

The computational procedure described above
can be successfully applied for calculating the
solid surface temperature of any celestial object
whose surface is forced by the external radiation
which is represented by a periodic function of
time (such that retaining the first term of the
Fourier series is justified), since we were able to
prove that under the above conditions, the
“diurnal” course of the surface temperature of
the celestial object, consisting of the solid matter,
has the same functional form as the “diurnal”
course of temperature at any depth.

N

SQRTG = (Z (Tg),jﬁ’

i=1

3. Verification of the method

Verification of the method suggested is made by
calculating the lunar surface temperature. There
is a physical reason for this choice since the
Moon has no exchange of heat by the latent and
sensible heat fluxes due to absence of the
atmosphere. Thus, on the right hand side of Eq.
(1) there remain only two terms, one due to
radiation, and other due to the ground heat flux
whose imbalance, determined by the errors in
estimation of the deep ground temperature, will
be more emphasized than in the presence of the
atmosphere.

The external forcing by the incoming solar
radiation R; is calculated from the equation

R; = Ry[sin Q2 sin 3 + cos Q2 cos B sin(A + 7)]
(10)

where Ry is the solar constant used with the value
1353.0Wm > and the expression in square
brackets is the zenith angle of the Sun, while 7
and ( are the longitude and latitude at the chosen
point of lunar surface, A is the colongitude of the
Sun and (2 is the latitude of the Sun. The values of
A, Q) are available in the astronomical year
books.

The thermal conductivity of the considered
lunar surface was derived following the mathe-
matical background and physical constants of
paper (Jones et al., 1975), which is partly devoted
to heat transfer through the particulate material.
The thermal conductivity which strongly depends
on temperature is calculated as

MT) = Xo + xoT? (11)

where coefficients )y and x( are approximated by
a third order polynomial in terms of the bulk
density which is set to be 1970 kgm > (an average
density in the upper half of the core sample taken
by the astronauts in the mission Apollo12). The
volumetric heat capacity C, whose dependance on
temperature in this study is neglected, is set to be
1.4 -10°Jm—2K~!. This value, taken from (Horai
and Fujii, 1971), represents an average of
volumetric heat capacity of the lunar surface, in
considered area, consisting mainly of particulate
rocks of basalt.

For verification of the method suggested we
used the three available data sets with the Earth
based observations concerning the lunar surface
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Fig. 1. The calculated “‘diurnal” variation of the lunar surface temperature (solid line) and the deep ground temperature

(dashed line) compared to observations

temperature obtained in the infrared spectral area
which, in the further text, will be indicated by
DS1 (Stimpson and Lucas, 1972), DS2 (Jones
et al., 1975) and DS3 (Jones et al., 1975).

The corresponding numerical model based on
the method reported in the preceding section was
run with the time step of 360s and initial
conditions for the surface temperature and the
deep ground temperature 7, = 110K and T; =
280K, respectively. The calculated ‘‘diurnal”
variation of the lunar surface temperature is
shown in Fig. 1. The solid line represents the
surface temperature while the dashed one

indicates the ‘“‘diurnal’” variation of the deep
ground temperature. By “diurnal” we mean the
rotation period of approximately 709 hours. All
panels at this figure, represent the evolution of
the convergence of the both “diurnal” courses
during their passing through the five iterations
until the condition (9) is reached.

First of all, a very fast convergence of the
calculated values to the observed ones for both
curves can be seen in Fig. 1. In fact, the general
agreement with the observational data is a
achieved practically after the first run, so, one
may wonder why further runs are necessary.
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Fig. 2. Evolution of SQRTG defined by the criterion (9)

However, the efficiency of the method can not be
completely judged from these plots. The real
advantage of the method can be appreciated only
from Fig. 2 which shows the evolution of con-
vergence expressed in terms of the lunar surface
temperature differences between successive
iterations at all computational points given by
the expression of the left hand side of inequality
(9) Figure 2 indicates that the method suggested
practically provides the convergence after the
fifth iteration. Moreover, from the point of view
of applied earth sciences, where one does not
need so strict condition in Eq. (9) as used in this
study (3K), the process of convergence will be
even faster. Let us note that 3K is a total error
over 7090 points. A more detailed comparison
with other approaches will be published sepa-
rately.
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