
Atmospheric Environment 35 (2001) 4159–4174

Evaluating the performance of regional-scale photochemical
modeling systems: Part IFmeteorological predictions

Christian Hogrefea, S. Trivikrama Raoa,*, Prasad Kasibhatlab, George Kallosc,
Craig J. Trembackd, Winston Haoe, Don Olerudf, Aijun Xiuf, John McHenryf,

Kiran Alapatyf

aDepartment of Earth and Atmospheric Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
bNicholas School of the Environment, Duke University, Durham, NC 27708, USA

cDepartment of Physics, University of Athens, Greece
dMission Research Corporation/ASTeR Division, Fort Collins, CO 80522, USA

eNew York State Department of Environmental Conservation, Albany, NY 12233, USA
fEnvironmental Programs, North Carolina Supercomputing Center, Research Triangle Park, NC 27709, USA

Received 1 November 2000; accepted 12 March 2001

Abstract

In this study, the concept of scale analysis is applied to evaluate two state-of-science meteorological models, namely
MM5 and RAMS3b, currently being used to drive regional-scale air quality models. To this end, seasonal time series of
observations and predictions for temperature, water vapor, and wind speed were spectrally decomposed into

fluctuations operating on the intra-day, diurnal, synoptic and longer-term time scales. Traditional model evaluation
statistics are also presented to illustrate how the method of spectral decomposition can help provide additional insight
into the models’ performance. The results indicate that both meteorological models under-represent the variance of
fluctuations on the intra-day time scale. Correlations between model predictions and observations for temperature and

wind speed are insignificant on the intra-day time scale, high for the diurnal component because of the inherent diurnal
cycle but low for the amplitude of the diurnal component, and highest for the synoptic and longer-term components.
This better model performance on longer time scales suggests that current regional-scale models are most skillful for

characterizing average patterns over extended periods. The implications of these results to using meteorological models
to drive photochemical models are discussed. r 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Three-dimensional photochemical modeling systems
such as URM (Kumar et al., 1994), UAM-V (Systems

Applications International (SAI), 1995), CAMx (EN-
VIRON, 1997), SAQM (Chang et al., 1997), MAQSIP

(Odman and Ingram, 1996; Kasibhatla and Chameides,
2000), MODELS-3 (United States Environmental Pro-
tection Agency (US EPA), 1998, 2000), etc. are the

primary tools being applied by state and federal agencies
for developing emission control strategies to reduce
ambient ozone concentrations to a level below the
National Ambient Air Quality Standard (NAAQS)

(United States Environmental Protection Agency (US
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EPA), 1991, 1999). Therefore, an evaluation of all
components of the photochemical modeling systems is

critical to building confidence in the use of these types of
models for regulatory purposes. In a series of three
papers, we introduce a new concept to model perfor-

mance evaluation and apply it to analyze meteorological
input parameters, ozone predictions, predictions of
ozone precursors, and predictions of ozone-precursor
relationships. In this first paper of the series, we focus on

the evaluation of meteorological fields simulated by two
mesoscale meteorological models being widely used for
air quality simulations.

In the previous studies, meteorological models used
in air pollution modeling (Hanna, 1994; Lyons et al.,
1995; Olerud and Wheeler, 1997) have been evaluated

using traditional statistical measures as well as
qualitative assessments such as visual examinations
of observed and simulated wind and temperature

fields. As some of these studies noted, the evaluation
of meteorological models being used in air pollution
modeling is an ‘inexact science’; the observed and
predicted meteorological fields are not independent

because of the use of four-dimensional data assimilation
(4DDA), and there are no clear pass/fail criteria
for assessing the performance of meteorological

models being used in air quality simulations
(Hanna, 1994; Olerud and Wheeler, 1997; Pielke and
Uliasz, 1998). In addition, comparisons between

observations and model predictions are complicated
by the fact that observations are point measurements
while model predictions are Reynold’s average mean
state variables.

In this study, we introduce the concept of scale
analysis (Eskridge et al., 1997; Vukovich, 1997; Rao
et al., 1997, 2000) to evaluate regional-scale photo-

chemical modeling systems, and apply it to the output
from seasonal simulations from two different current-
generation modeling systems. The work presented in this

study builds upon the preliminary comparisons between
observations and model predictions for meteorological
variables performed by Hogrefe and Rao (2000). By

evaluating model performance on different time scales
using a spectral filter, we are able to quantify the scale
dependence of model performance. The results are
discussed from the perspective of regulatory applications

of meteorological/photochemical modeling systems. In
the context of the other two papers in this series
(Hogrefe et al., 2001; Biswas et al., 2001), an evaluation

of the meteorological input fields applied in the
photochemical model is intended to determine the time
scales on which air quality predictions canFor can-

notFbe expected to capture the salient temporal and
spatial features embedded in air quality observations. If,
for example, wind speed (transport) predictions on a

certain time scale were shown to be inconsistent with
observations, one cannot expect ozone predictions from

the photochemical model to be accurate for the right
reasons on that time scale.

2. Description of model and database

Both meteorological modeling simulations analyzed

in this study have been performed as part of separate
previous studies (Lagouvardos et al., 1997; SMRAQ,
1997a, b). As a result, modeling options such as cloud

parameterization, soil moisture, 4DDA, etc., were
treated differently in both simulations.

2.1. RAMS3B

The first meteorological model used in this study is

RAMS3b (Walko et al., 1995), whose application to air
quality studies was described by Lyons et al. (1995). The
RAMS3b simulations were performed for the 1 June–31

August 1995 period on three nested grids with hor-
izontal grid dimensions of 108, 36 and 12 km, respec-
tively (Fig. 1). Four-dimensional data assimilation was

employed using input fields blended from surface
observations and the analysis fields available from the
European Center for Medium Range Forecasting

(ECMWF). The time interval for both the ECMWF
fields and the surface observations was 6 h. Specifically,
model predictions for wind, temperature and water
vapor were nudged towards these blended input fields

with a nudging factor of 4.62� 10@5 s@1 for all layers
and grids. The outer 108 km RAMS3b grid in this
simulation covers most of the continental US and has 28

vertical layers ranging from 69m to about 16 km, and
the 36 and 12 km grids have 34 layers, ranging from 17m

Fig. 1. Map depicting the three horizontal RAMS3b grids

(108� 36� 12 km grid spacing), the two horizontal MM5 grids

(108� 36 km grid spacing), and the ‘‘analysis domain’’ used in

this study.
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to 16 km. In the RAMS3b simulation, the option of
simulating clouds was not enabled because of computa-

tional constraints for performing the seasonal simula-
tion. A more detailed description of the meteorological
modeling used in this analysis can be found in

Lagouvardos et al. (1997). Since the RAMS3b fields
were used to drive the UAM-V photochemical model,
they had to be mapped from the polar-stereographic
coordinate systems used by RAMS3b on to the lat/lon

coordinate system used by UAM-V. In particular, the
RAMS3b fields were interpolated to a grid with
horizontal grid dimensions of 36 km extending from

991W to 671W and from 261N to 471N. Fourteen
vertical layers extend from the surface to about 4 km in
the UAM-V model. These interpolated fields rather than

the original fields are analyzed here since they were used
to drive the photochemical simulations analyzed in the
companion papers (Hogrefe et al., 2001; Biswas et al.,

2001). Hereafter, we will refer to the meteorological
input fields for the RAMS3b/UAM-V photochemical
simulation as ‘RAMS3b’ with the understanding that
the meteorological outputs from RAMS3b were mapped

on to the UAM-V grids.

2.2. MM5

The second modeling system considered here is the
Seasonal Model for Regional Air Quality (SMRAQ).

The meteorological component of the SMRAQ system is
the NCAR/PennState Fifth Generation Model (MM5)
(Grell et al., 1994), and the photochemical model is the

Multiscale Air Quality Simulation Platform (MAQSIP)
(Odman and Ingram, 1996).
The modeling period for the SMRAQ study spanned

from 15 May 1995–11 September 1995 (Kasibhatla and

Chameides, 2000). This modeling period encompasses
the same time period for which the RAMS3b/UAM-V
simulation was carried out. The two horizontal grids

used in the SMRAQ study had dimensions of 108 and
36 km. Fig. 1 depicts a map of the horizontal grids used
in the two modeling systems. As with the RAMS3b

simulation, 4DDA was used. The analysis fields were
derived from a blend of ECMWF fields (6 h time
intervals), surface observations (3–6 h time intervals),

and rawinsonde observations (12 h time intervals).
However, whereas nudging for RAMS3b was performed
for wind speed and temperature for all model layers, for
MM5 nudging was done for wind speed, temperature

and water vapor mixing ratio above the boundary layer
and for wind speed only within the boundary layer. The
nudging factors used for wind speed and temperature in

MM5 were 3.0� 10@4 s@1 for the outer grid and
2.5� 10@4 s@1 for the inner grid, and the nudging
factor used for water vapor mixing ratio was

1.0� 10@5 s@1. In other words, the nudging used for
winds (and temperature above the boundary layer) in

MM5 was stronger than the one used in RAMS3b, but
temperature predictions within the boundary layer are

purely prognostic for MM5. Since high-frequency
fluctuations are smoothed out in the 4DDA fields used
in both simulations, the stronger nudging in MM5 may

suppress some high-frequency fluctuations. In contrast
to the RAMS3b and UAM-V system, both MM5 and
MAQSIP used the same grid systems so that no
interpolation of meteorological fields into the photo-

chemical model was needed. A major difference between
the MM5 and RAMS3b simulations is the inclusion of a
cloud parameterization in the MM5 simulation. For the

outer grid, the Kuo cloud scheme (Kuo, 1974) was
employed, and for the inner grid, the Kain–Fritsch cloud
scheme (Kain and Fritsch, 1990, 1993) was employed.

The simulated cloud cover in MM5 provides both
nocturnal (long-wave) and daytime (short-wave) radia-
tion modulation. Additional details about the SMRAQ

project can be found in SMRAQ (1997a) and Kasibhatla
and Chameides (2000). Hereafter, we will refer to the
meteorological input fields for the SMRAQ study as
‘MM5’.

2.3. Observations

For the evaluation of model predictions in Layer 1,
hourly surface observations were retrieved from the
Data Support Section at the National Center for

Atmospheric Research (NCAR-DSS). Whereas the
height of the first layer is 50m for RAMS3b/UAM-V,
it is 38m for MM5/MAQSIP. As noted above, since

4DDA was performed for both the RAMS3b and MM5
simulations, the observed and predicted fields are not
independent. The analysis domain for this study extends
from 921W to 69.51W and 321N to 441N (see Fig. 1).

Only monitoring data from stations within this analysis
domain and corresponding model results are presented
here; the model results were bilinearly interpolated to

the observational sites. For the evaluation of upper air
model predictions, we use a set of radiosonde and
profiler measurements that were made as part of the

NARSTOFNortheast research project during the
summer of 1995. During the three high ozone events
(19–20 June, 13–15 July, 31 July–2 August), additional

radiosonde soundings were made to supplement the
routine soundings at 00:00 GMT and 12:00 GMT at six
sites in the northeastern United States. Continuous 1 h
average wind measurements were obtained from 5

profilers for the 15 June–31 August 1995 time period.
These profilers measured winds up to about 4 km;
measurements are reported as layer-average for layer

thicknesses of 57 and 105m. The lowest layer ranges
from 82 to 139m. The profilers were located at
Milestone Point, CT, Redhook, NY, Rutgers Univer-

sity, NJ, Gettysburg, PA, and Holbrook, PA. These
additional soundings and profiler measurements provide
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a good database for model evaluation since they were
not used in 4DDA.

3. Methods of analysis

3.1. Traditional model evaluation statistics

In previous studies, several statistical measures have
been used to evaluate meteorological models used for air
pollution modeling (Willmott, 1982; Hanna, 1994;

Olerud and Wheeler, 1997; McNally and Tesche,
1993). Some of these measures are listed in Table 1.
The sampling for these statistics can be done through

space at each hour (i.e., time series of spatial statistics),
through time at each location (i.e., spatial patterns of
temporal statistics), or both through space and time (i.e.,

one number characterizes the entire simulation). In
addition, these statistics can be applied either to the
entire data set (usually hourly averaged variables) or to

extreme values such as the daily maximum or minimum
to evaluate particular aspects of model performance.
The use of traditional statistical measures to evaluate

model performance faces several shortcomings: the

required statistical independence of the observed and
predicted data sets is violated because of the use of
4DDA (Hanna, 1994; Olerud and Wheeler, 1997), and

these statistics provide little insight into the physical
behavior of the model. Therefore, additional model
evaluation methods are needed to supplement these

statistical methods, and some of such additional
methods are introduced in the following section.

3.2. Definition of time scales and associated processes

It is well known that time series of meteorological
variables contain fluctuations occurring on different
time scales. However, the highest and lowest resolvable

frequencies are determined by the sampling interval and
the length of the data record, respectively. Since we
analyze hourly time series of both observations and
model predictions for a time period of three months, the

periods that can be resolved range from 2h to 30–40
days. The choice of the different frequency bands in our
analysis is based on the power spectrum as well as a

priori knowledge about different physical processes of
interest to the simulation of atmospheric dynamics for
air quality simulations. For many atmospheric variables,

the single largest forcing in the hourly time series data is
the diurnal (DU) forcing with a period of 24 h.
Additional frequency bands of interest are the intra-

day (ID) range (periods less than 12 h), the synoptic
(SY) range (periods of 2–21 days), and longer-term (BL)
fluctuations (baseline containing periods greater than 21
days). While an approximate choice of these periods was

based on physical considerations (the intra-day compo-
nent reflects turbulent and local-scale processes such as
local convective cloud and precipitation events; the

diurnal component will be dominated by the day-and-
night differences with 24 h periodicity; the synoptic
component will contain fluctuations related to 500 and

300mb Rossby and short-wave evolution/propagation;
and the baseline will contain low-frequency oscillations
forced by subseasonal solar-seasonal to inter-annual-
processes including, for example, ENSO), the actual

choice of frequency bands was made to minimize the

Table 1

Definition of the traditional evaluation statistical measures

Mean bias errora (MBE) amodðx; tÞ@aobsðx; tÞ

Fractional mean biasb (FB)
amodðx; tÞ@aobsðx; tÞ

0:5ðamodðx; tÞ þ aobsðx; tÞÞ

Mean absolute gross errora (MAGE) jamodðx; tÞ@aobsðx; tÞj

Root mean square errora (RMSE) ½jamodðx; tÞ@aobsðx; tÞj2�0:5

Fractional mean square errorb (NMSE)
jamodðx; tÞ@aobsðx; tÞj2

amodðx; tÞ�aobsðx; tÞ

Standard deviation of residualsa (SDR) ½jðamodðx; tÞ@aobsðx; tÞÞ@MBEj2�0:5

Correlation coefficientb R
ðamodðx; tÞ@amodÞ � ðaobsðx; tÞ@aobsÞ

½ðamodðxi; tÞ@amodÞ
2�0:5�½ðaobsðxi; tÞ@aobsÞ

2�0:5

aFrom McNally and Tesche (1993).
bFrom Hanna (1994).
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covariance between the estimates of the different
temporal components. It should be noted that not all

meteorological variables will show significant variations
on all of these time scales, but we still chose to use the
same spectral decomposition for all variables for the

sake of consistency and inter-comparison.

3.3. Spectral decomposition of time series

While any method that can cleanly decompose a time
series into fluctuations of the desired time scales can be

used, we used the Kolmogorov–Zurbenko (KZ) filter
(Zurbenko, 1986) because of its powerful separation
characteristics, simplicity, and ability to handle missing

data. A detailed discussion of the KZ filter as well as
comparisons to other separation techniques can be
found in Eskridge et al. (1997), Rao et al. (1997), and

Hogrefe et al. (2000). In contrast to time series of ozone
concentrations, the time series of meteorological vari-
ables are not log-transformed prior to analysis.

4. Results

4.1. Traditional statistics

The results of the traditional evaluation statistical
metrics discussed in Section 3.1 are presented in Tables
2a and b for the surface temperature and surface wind

speed for both RAMS3b and MM5. These values reflect
averages over space (all monitoring stations) and time
(all hours). In most previous studies, only values for the

hourly data were reported (e.g. Olerud and Wheeler,

1997). Additional information about the models’ ability
to reproduce the amplitude of the diurnal cycle can be

obtained by applying these statistics to daily minimum
and maximum values as well. The results for surface
temperature, presented in Table 2a, show thatFfor

hourly dataFRAMS3b predictions have a positive bias
of about 11C while MM5 underpredicts temperature by
about 11C. All other statistics show similar values for
the two modeling systems for the hourly values, with

rather small absolute and mean square errors and high
correlation coefficients. When the statistics for the daily
minimum and maximum temperature are compared, it is

evident that RAMS3b overpredicts both the mean of the
hourly values as well as the mean of the daily maxima
and minima by roughly the same amount, while MM5

underpredicts the mean of the daily maximum values
much stronger than the mean of the hourly values and
overpredicts the mean of the daily minimum values. This

indicates that MM5’s layer-1 diurnal temperature range
was smaller and less-well ‘‘represented’’ than the
RAMS3b modeling system. In general, however, this
was expected because cloud coverFfully modeled in

MM5 while entirely omitted from RAMS3bFprovides
both nocturnal (long-wave) and daytime (short-wave)
radiation modulation, simulating clouds’ first order

control on surface temperature. In addition, it should
be kept in mind, that when comparing the surface
observations with model predictions in layer 1, strong

gradients near the surface could distort the comparison.
In other words, the diurnal variation of the temperature
at 19m or 25m, representative for the model’s first layer,
might be considerably less than at the surface in the

presence of strong gradients. Taking this into account,

Table 2

Hourly data Daily maximum Daily minimum

RAMS3b MM5 RAMS3b MM5 RAMS3b MM5

(a) Traditional evaluation statistics for RAMS3b and MM5 predicted temperature.

Mean bias error (1C) 1.38 @0.93 1.19 @3.45 0.55 1.31

Fractional mean bias (%) 5.57 @3.96 3.95 @12.4 2.85 6.67

Mean absolute gross error (1C) 2.29 2.22 2.09 3.57 1.70 1.85

Root mean square error (1C) 3.03 2.89 2.68 4.03 2.22 2.42

Fractional mean square error (%) 1.50 1.51 0.8 2.1 1.34 1.53

Standard deviation of residual distribution SDR (1C) 2.69 2.74 2.41 2.08 2.15 2.04

Correlation coefficient R 0.88 0.88 0.83 0.87 0.85 0.87

(b) Traditional evaluation statistics for RAMS3b and MM5 predicted wind speed.

Mean bias error (m s@1) 0.61 0.28 @0.68 @1.01 1.31 1.02

Fractional mean bias (%) 18.8 8.5 @12.6 @19.4 99.0 87.0

Mean absolute gross error (m s@1) 1.41 1.34 1.46 1.41 1.45 1.20

Root mean square error (m s@1) 1.80 1.71 1.93 1.88 1.71 1.55

Fractional mean square error (%) 31.0 30.8 12.9 13.2 223 215

Standard deviation of residual distribution SDR (m s@1) 1.70 1.69 1.81 1.59 1.10 1.16

Correlation coefficient R 0.58 0.58 0.48 0.57 0.48 0.56

C. Hogrefe et al. / Atmospheric Environment 35 (2001) 4159–4174 4163



the underestimation of the diurnal temperature ampli-
tude by MM5 might not be as severe, and the RAMS3b

amplitude might actually be an overestimate. As
discussed in SMRAQ (1997b), a further reason for the
negative bias of the MM5 surface temperatures could be

caused by the Kain–Fritsch cloud parameterization used
in MM5 that tends to create unrealistically large and
long-lasting ‘‘cold pools’’ under weakly forced situa-
tions. In addition, problems with the treatment of

radiation in cloudy conditions may also contribute to
this bias.
The results for the surface water vapor mixing ratio

(not shown) suggest good model performance for this
variable. Table 2b presents the evaluation statistics for
the surface wind speed. Both modeling systems predict

the mean hourly observed wind speed to within about
0.5m s@1 (the rather high values for the fractional
errors reflect the low values of the mean observed wind

speed). A feature common to both modeling systems is
the underprediction of the daily maximum wind speed
and the overprediction of the daily minimum wind
speed. This can be expected because we are comparing

model predictions of Reynold’s-average mean state
variables with point measurements through these
statistics, and sub-grid scale wind speed fluctuations

can be substantial (e.g. Hanna, 1994; Hanna and Chang,
1992). Therefore, one would not expect a coarse-
resolution discrete model to capture the full-amplitude

range of observed surface winds. In addition, the use of
4DDA can also damp-out features with higher fre-
quency temporal–spatial characteristics, because signifi-
cant smoothing is applied to the analyzed fields prior to

their use in 4DDA. This dependence of model perfor-
mance on the amount of energy present within different
time scales for a particular variable will be discussed in

more detail in the following section.

4.2. Scale analysis

To examine the relative contribution of the different
temporal components to the overall process energy, we

calculated the variances of the seasonal time series of the
components for both observations and model predic-
tions for temperature, water vapor mixing ratio, and

wind speed, and expressed them as fractions of the sum
of the variances of all components. This allows us to
compare the relative importance of different dynamic
processes to the overall process for both observations

and model predictions. The results, presented in
Figs. 2a–c, represent spatial averages over all observa-
tion stations and the corresponding model grid cells.

It can be seen that there is a significant amount of
covariance between the separated components as
indicated by the difference between the sum of the

component variances and the variance of the undecom-
posed (raw) time series. For the observed and RAMS3b

predicted temperature components (Fig. 2a), it is evident
that temperature fluctuations caused by the day-and-

night differences account for most of the variability in
hourly temperature time series, followed by longer-term
and synoptic-scale (weather-induced) fluctuations, while

intra-day (local-scale) variations contribute little to the
overall fluctuation. The RAMS3b model overestimates
the relative contribution of the diurnal component to the
overall variance and, as a consequence, understates the

relative importance of the remaining components.
However, the absolute amount of variance is captured
closely by RAMS3b. For the MM5 predicted tempera-

ture time series, the total variance is underestimated by a
factor of 2, and the importance of the diurnal fluctuation
is strongly underestimated. This is consistent with the

finding discussed in Section 4.1 which showed that
MM5 underpredicts the diurnal temperature variation,
andFas discussed in that sectionFis likely attributable

to the inclusion of clouds in MM5 as well as the
comparison of layer 1 model predictions with the surface
observations.
For the observed and predicted mixing ratio time

series from the two models, it can be seen that longer-
term fluctuations are the largest contributors to the total
variance, followed by synoptic-scale and diurnal fluctua-

tions (Fig. 2b). The calculations for the wind speed time
series (Fig. 2c) show significant differences between
observations and model predictions. While in the

observations, the intra-day component accounts for
more than 20% of the variance, there is little contribu-
tion from the intra-day component to the overall
variance in the predictions from either model. While

Figs. 2a–c are useful to study the differences in the
observed and predicted relative contributions of indivi-
dual components to the overall variance, they do not

allow us to compare the absolute magnitude of the
fluctuations on different time scales between observa-
tions and model predictions directly. To this end, Table

3 displays the ratio of the variance of the predicted time
series over the variance of the observed time series on
different time scales for temperature, water vapor, and

wind speed.
For the raw (unfiltered) temperature time series, the

ratio of RAMS3b-predicted to observed variance is close
to 1, while MM5 underpredicts the total variance by a

factor of 2 (cf. Fig. 2a). For the intra-day temperature
component, the variance is underestimated by both
models, while the variance of the diurnal temperature

component is overestimated by RAMS3b and under-
estimated by MM5. The variance of the synoptic and
baseline components for temperature is underestimated

by both models by approximately equal amounts, with
the underestimation being stronger for the synoptic than
the baseline component. As noted above, the under-

estimation of the diurnal temperature amplitude by
MM5 is partially expected from a modeling simulation
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Fig. 2. Pie charts depicting the relative contribution of the variances of the component time series to the sum of the component

variances for observations and model predictions. (a) Temperature. (b) Water vapor mixing ratio. (c) Wind speed.

Table 3

Ratio of variances of modeled to observed temporal components of time series for different variables

Original Intra-day Diurnal Synoptic Baseline

Temperature RAMS3b/obs 0.99 0.39 1.24 0.70 0.84

MM5/obs 0.50 0.17 0.34 0.67 0.88

Water vapor RAMS3b/obs 1.00 0.12 1.48 1.02 0.95

MM5/obs 1.12 0.18 1.09 1.32 1.08

Wind speed RAMS3b/obs 0.81 0.06 0.78 1.39 1.52

MM5/obs 0.87 0.09 0.48 1.98 1.84
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at a relatively coarse 36 km grid spacing and 38m layer 1
height. The fact that RAMS3b does not show this

underestimation might suggest that it provides a better
agreement for the wrong reasons, namely, the lack of
cloud effects. In short, the simulation of cloud processes

is essential to create the right spectral response on the
diurnal time scale for the right reason; however, it has to
be kept in mind that there is considerable uncertainty in
accurately simulating clouds with the current generation

meteorological models.
For water vapor, both models approximately

capture the variance of the original time series. As

for temperature, the variance of the intra-day compo-
nent is underestimated by both models. While the
variance of the diurnal component is overestimated by

RAMS3b and approximately captured by MM5, the
situation is reversed for the variance of the synoptic
component. The corresponding results for the wind

speed components show that total variance is slightly
underestimated by both models. Again, the models
strongly underestimate the variability present on the
intra-day time scale, whereas the amount of synoptic-

scale and baseline variability for wind speed is over-
estimated.
In summary, both the comparison of relative con-

tributions of individual components to the total variance
and the computation of ratios of predicted to observed
variance for individual components provide useful

insights into the ability of the models to correctly
predict the amount of energy present on different time
scales. Since fluctuations of these time scales are
associated with different physical processes, this pro-

vides information about the ability of the model to
capture these processes, and this information could not
be as well-quantified without spectral decomposition of

the time series.
The preceding analysis shows that model predictions

could not properly capture the temporal variability

present in the observed intra-day component for any
variable. An additional way of evaluating model
predictions against observations is to determine the

average spatial correlation structure for each compo-
nent. This is achieved by determining the correlation
between the seasonal time series of a given temporal
component at two different locations, determining the

distance separating the two stations, repeating this
procedure for all possible station pairs, and then
determining the average correlation between two sta-

tions being separated by a certain distance. Figs. 3a–d
show the results from this analysis (results are shown for
wind speed only). While the spatial correlation for the

observed intra-day component for wind speed drops to
values below 0.3 in less than 15 km, the predictions from
both modeling systems retain a strong spatial correla-

tion on this time scale even beyond 100 km. In other
words, the spatial variability of high-frequency, local-

scale wind fluctuations is not simulated well by the
models (i.e., highly smoothed wind fields are reflected in

the models). For the diurnal component, the spatial
extent of the correlation structure is underestimated by
MM5. For the other components, there is a good

agreement between the observed and predicted average
spatial correlation structures.
In addition to the above analysis, we also developed

spatial maps of the correlation coefficient between

observed and predicted time series of meteorological
variables on different time scales. These maps permit us
to identify the time scales on which the predicted time

series are closest to the observed time series in different
geographical areas. These results are presented in Fig. 4
for temperature and in Fig. 5 for wind speed. The panels

in Fig. 4 illustrate that the time series of raw data,
diurnal, synoptic and longer-term components are
captured well by both models, with the highest correla-

tions for the longer-term components. However, the
time series of the intra-day component and amplitude of
the diurnal cycle (which is created by taking the
difference between the maximum and minimum values

of the diurnal component on each day and, thus, does
not contain the quasi-sinusoidal pattern of the hourly
diurnal component stemming from night/day differ-

ences) show a weaker correlation.
For the wind speed (Fig. 5), correlations between

observations and predictions are generally lower than

that for the temperature. Most striking is the lack of
correlation between the observed and predicted intra-
day components, again illustrating the models’ inability
to capture fluctuations on this time scale. It is evident

from Fig. 5 that correlations are highest for fluctuations
having time scales longer than 1 day.
To illustrate the poor correlation of the amplitudes of

the observed and predicted diurnal components for
temperature, we present time series of observed and
predicted daily maximum temperatures obtained from

the raw data in Fig. 6a, time series of the amplitudes of
the observed and predicted diurnal components in
Fig. 6b, and time series of the normalized amplitudes

of the observed and predicted diurnal components in
Fig. 6c for Pittsburgh, PA. Fig. 6a shows that the
observed and predicted daily maximum temperature
time series follow each other closely. This is due to the

influence of the synoptic-scale and longer-term forcings
present in the time series, since these components are
captured well by the models (cf. Fig. 4). On the other

hand, Figs. 6b and c illustrate that the time series of the
observed diurnal amplitude display a large variability
that is not captured in the time series of the RAMS3b-

predicted diurnal amplitude. In other words, the
variability of the day-to-night temperature fluctuations
due to the diurnal heating/cooling cycle (after removal

of synoptic-scale and longer-term temperature varia-
tions caused by processes such as advection of air masses
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and frontal passages) in the observations is not
simulated well by the RAMS3b model. A likely reason
for this lack of variability in the RAMS3b predictions is

that the meteorological model was run without the
simulation of cloud processes. Therefore, clear sky
conditions are always present in RAMS3b, leading to
much less day-to-day variability in the predicted diurnal

heating/cooling cycle. To investigate this hypothesis
further, we calculated the correlation between the time
series of the amplitude of the observed diurnal

temperature component and the observed daily mean
opaque cloud cover at each observation station. The
spatially averaged correlation coefficient is @0.74. This

high negative correlation indicates that days with high

cloud cover tend to have lower day/night temperature
differences, and vice versa. Thus, the absence of the day-
to-day variability of the diurnal temperature amplitude

in RAMS3b is mostly attributable to the absence of
clouds in the RAMS3b simulation. The inclusion of
both explicit, grid-scale clouds and implicit, parameter-
ized deep convection in MM5 compared to RAMS3b is

likely to increase the day-to-day variability of the
amplitude of the diurnal temperature component. This
is indeed the case, as can be seen in Figs. 6b and c.

However, although MM5’s day-to-day variability of the
diurnal temperature amplitude is larger than for
RAMS3b, the actual amplitude is smaller than in the

observations, consistent with the discussion of MM5

Fig. 3. Decay of correlations between wind speed time series at station pairs as function of distance between station pairs for

observations and model predictions. (a) Intra-day component. (b) Diurnal component. (c) Synoptic component. (d) Baseline

component.
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temperature predictions above. The correlations be-
tween the observed and MM5-predicted amplitude of

the diurnal temperature cycle are improved compared to
the RAMS3b simulation, but still lower than those for
the synoptic and baseline components. Therefore, the

inclusion of cloud processes has improved the simula-

tion of the diurnal time scale for temperature, but still
the model performance is best on the synoptic and

baseline time scales. This points to problems of
consistently simulating the clouds at the right loca-
tion at the right time, which is expected as clouds are

highly scale-dependent: while synoptically driven major

Fig. 4. Spatial images of correlation coefficients between observed and predicted time series of temperature for different spectral

components. Correlations between RAMS3b predictions and observations are shown on the left, correlations between MM5

predictions and observations are shown on the right.
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precipitation systems and their clouds are likely to be
well-simulated by a mesoscale model at 36 km grid

spacing, diurnally-driven precipitation and clouds under
weaker forcing are likely to be less well-represented, and
locally-driven boundary layer clouds that act on the
intra-day time scale are likely to be represented poorly.

4.3. Upper air data

While the previous sections focused on the evaluation
of Layer 1 model predictions, we present a brief
evaluation of model predictions for all model layers in
this section. As mentioned before, additional radiosonde

Fig. 5. Spatial images of correlation coefficients between observed and predicted time series of wind speed for different spectral

components. Correlations between RAMS3b predictions and observations are shown on the left, correlations between MM5

predictions and observations are shown on the right.
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soundings were made in 1995 in addition to the routine
soundings at 00:00 GMT and 12:00 GMT at a number

of sites in the northeastern United States during the
three ozone episodes, and profilers measured wind speed
and direction for layers between 100m and 4 km at five

additional sites. These soundings and profiler measure-
ments provide a good database for model evaluation
since they were not used for 4DDA. For each model

layer, the available observations within this layer were
averaged corresponding to each sounding or profiler
measurement, and then these pairs of observed and
modeled values were compared. Because the additional

soundings were performed only on a limited number of
high ozone days, the spectral decomposition technique
could not be applied to this set of observations.

Therefore, we computed the mean and standard devia-
tion of the differences of all pairs of observed and
predicted data (summed over all non-routine soundings

and all six sites) for each layer for temperature, water
vapor mixing ratio and wind speed. The results indicate
that neither modeling system exhibits a bias at any level
for any variable that is significant at the 1-s level with

the exception of temperature, which is underpredicted

by both models above 3 km. The NARSTO-NE profiler
measurements provide us with a much more dense

temporal coverage and, therefore, allow us to perform
spectral decomposition. Figs. 7a–c show profiles of the
relative contribution of individual components to the

total sum of the component variances for wind speed
observations and predictions from the two models
averaged over all five profiler sites. It can be seen that
in the observations, the diurnal component is the largest

forcing for the lowest layers only, while at higher levels,
the synoptic component becomes the dominant forcing
and the baseline component becomes the second largest

forcing above 2 km (Fig. 7a). The relative contribution
of the intra-day component decreases sharply between
about 100 and 400m, but remains almost constant at

about 8% at higher levels. MM5 captures the shape of
the observed profiles for the DU and BL components
better than RAMS3b, but both models overestimate the

importance of the synoptic component and under-
estimate the importance of the diurnal component
above 500m and the intra-day component for all
layers (Figs. 7b and c). Figs. 8a–b show profiles of the

correlation coefficients between observed and predicted
time series of different components. The correlations
profiles are very similar for both model simulations; the

correlations are highest for the synoptic component
below 1200m and for the baseline component above
1200m. On the other hand, correlations between the

observed and predicted intra-day components are poor
for all layers in both models. The better model
performance on longer time scales as illustrated above
for surface data holds true for upper air data also.

4.4. Grid resolution issue: 36 vs. 12 km grid spacing for
RAMS3B

As mentioned in Section 2, the results from the
RAMS3b output interpolated to the 36 km UAM-V grid

were analyzed in the previous Sections 4.1–4.3 so that
these results could be compared to the MM5 model
simulations which were carried out with a grid spacing

of 36 km. However, since our findings indicate that both
models are unable to capture the energy and the
temporal variations of the intra-day component for

any variable, it is of interest to address the question
whether these results would improve if the grid
resolution is increased. For this purpose, we repeated
the analysis after the RAMS3b 12 km predictions were

interpolated to the UAM-V grid with a horizontal
spacing of 12 km extending from 921W to 69.51W and
321N to 441N. These meteorological fields were used in

the seasonal UAM-V simulation described in Hogrefe
et al. (2000). Note that the 12 km UAM-V grid is
identical to the analysis domain shown in Fig. 1. To

illustrate the effects of the different grid spacings, we
present Table 4 illustrating the ratios of modeled to

Fig. 6. (a) Time series of observed and predicted daily

maximum temperature at Pittsburgh, PA. (b) Time series of

the observed and predicted amplitude of the diurnal tempera-

ture component at Pittsburgh, PA. (c) Time series of the

observed and predicted normalized amplitude of the diurnal

temperature component at Pittsburgh, PA.
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observed variances and the spatially averaged correla-

tion coefficients for wind speed for 36 and 12 km
RAMS3b. From Table 4, it can be seen that the ratio
of modeled to observed variance is increased for the

12 km grid relative to the 36 km grid for all components.
The largest increase is on the diurnal scale and not on
the intra-day time scale. The correlations between

observed and predicted time series are nearly identical
for the 12 and 36 km grids. In short, these results
indicate that moreFbut not allFof the observed
variability on shorter time scale could be simulated with

the increased model resolution, but that the predictive

capability of the model as measured by correlation was

not improved.

4.5. Implications to the use of meteorological models

in air quality simulations

The above results illustrate the limitations and

strengths of meteorological input data used to drive
photochemical air-quality models. Out of the meteor-
ological variables investigated in this study, temperature

fields had the highest correlations, while wind speed
predictions showed the weakest correlations with

Fig. 7. Profiles of the relative contribution of the variances of the component time series to the sum of the component variances for

wind speed observations and model predictions. (a) observations. (b) RAMS3b. (c) MM5.
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observations. The lack of agreement between meteor-

ological model outputs and observations on the intra-
day and diurnal time scales has important implications
to air-quality predictions from photochemical models

that use these meteorological input fields. First, since
ozone fluctuations on the intra-day time scale are
influenced, among other factors, by wind speed fluctua-
tions on this time scale, ozone changes on the intra-day

time scale cannot be simulated accurately. Second, while
information about clouds derived from observations is
used to calculate the photolysis rates in UAM-V, the

absence of day-to-day variations in the heating/cooling
cycle due to the absence of clouds in the RAMS3b
simulation might impact the day-to-day variability in

the evolution of the planetary boundary layer, which, in
turn, will influence the day-to-day variability of the
amplitude of the diurnal ozone component.
More generally, the features with longer temporal and

larger spatial scales are captured well by the models.

While this is not surprising given that 4DDA was used in

both simulations, it is also clear that the grid spacing
used in this analysis as well as the formulation of model
physics is better able to handle larger scale features such

as the jet stream and geostrophic wind. In turn, the use
of 4DDA can damp-out features with higher frequency
temporal–spatial characteristics, because significant
smoothing is applied to the analyzed fields prior to

their use in 4DDA. In addition, due to the finite grid
spacing, fluctuations with smaller spatial and temporal
scales are not simulated properly, neither in terms of

their energy nor their temporal variation. While a part
of the poor performance on the shorter time scales might
be attributable to an inadequate formulation of model

dynamics and, therefore, theoretically could be im-
proved, deterministic grid-based models cannot predict
fluctuations at the sub-grid scale. This fundamental
shortcoming should be viewed as the inherent uncer-

tainty associated with the grid-based models. The

Fig. 8. Profiles of correlation coefficients between observed and predicted time series of wind speed on different spectral components.

(a) Correlations between observations and RAMS3b. (b) Correlations between observations and MM5.

Table 4

Ratio of modeled to observed variances for different components and correlations between observed and predicted time series for

different components for wind speed for both 12 km grid spacing and 36 km grid spacing RAMS3b simulations. All values are spatial

averages

Original Intra-day Diurnal Synoptic Baseline

Ratio of variances (mod/obs) 36 km 0.81 0.06 0.78 1.39 1.52

12 km 0.89 0.07 0.92 1.43 1.54

Correlation (mod-obs) 36 km 0.59 0.09 0.62 0.73 0.68

12 km 0.60 0.09 0.63 0.73 0.67
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amount of the inherent uncertainty theoretically de-
creases as grid resolution increases, assuming that a

perfect formulation of the model dynamics on all scales
is possible. However, as discussed above, the better
model performance on the longer time scales appears to

be partly attributable to the use of 4DDA; thus, an
increased grid resolution alone might reduce the
magnitude of the inherent uncertainty but not necessa-
rily improve overall model performance unless appro-

priate 4DDA is also carried out at this increased
resolution.
When these meteorological models are used to drive

air quality simulations, air quality predictions cannot be
expected to be accurate for scales which are not captured
by all the input fields used in the photochemical model.

In other words, even if the performance of the
meteorological model on the intra-day time scale were
improved potentially by decreasing horizontal grid

dimensions to 4, 1 km or smaller (assuming a perfect
formulation of model physics), the resulting air quality
predictions might not become more accurate because
other model inputs (e.g. emissions, land-use patterns,

soil moisture, etc.) are not accurately resolved to the
corresponding spatial scales. On the other hand, the time
scales of best performance for both state-of-science

meteorological models (i.e., synoptic and longer-term)
were also shown to be of great importance in photo-
chemical modeling for policy-making (Hogrefe et al.,

2000). This implies that, for regulatory purposes, there
may be little gain from increased horizontal grid
resolution of the photochemical modeling systems,
especially if an increased spatial resolution comes at

the expense of extended simulation periods covering a
larger domain.

5. Summary

In this study, model predictions of the layer 1
temperature, water vapor mixing ratio, and wind speed
used in seasonal photochemical simulations were com-

pared with all available surface observations. For this
comparison, both traditional evaluation statistics as well
as a spectral decomposition technique were used.

Traditional evaluation statistics indicate thatFout of
the investigated variablesFmodel performance is best
for temperature and worst for wind speed. With the
application of the spectral decomposition technique for

model evaluation, it becomes evident that model
performance is time scale specific and, therefore, the
outcome of model evaluation on different time scales can

be tied to the model formulation of the relevant
processes on these time scales. The results show that
predictions from both state-of-science meteorological

models do not capture either the amount of energy or
the temporal evolution of fluctuations on the intra-day

time scale. Correlations between the observed and
simulated time series of meteorological variables are

highest on the longer time scales. The better model
performance on the synoptic and longer-term time scales
strengthens the findings of Hogrefe et al. (2000) that

photochemical modeling systems (i.e., both meteorolo-
gical and chemical models) are best suited for character-
izing average patterns over regional domains, rather
than episodic (1–2 days) modeling for specific receptor

locations.
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