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Four different models for the prediction of frost events caused by air cooling due to thermal radiation
are presented in this paper. Three of them are based on polynomial functions that simulate different
types of temperature variations in comparison with an exponential one. The fourth, a post-processing
method based on Kalman filters, is proposed for those cases where a systematic type of bias has emerged.
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1. Introduction

Oneof the most important areas in the field of
applied meteorology and agricultural applications is the
prediction of frost events (i.e. temperatures below 3 ◦C).
There are essentially two main frost categories: the first
relates to advection of cold air masses and the second to
air cooling due to thermal radiation, usually during the
night or early hours of the morning.

Cold air advection frost is a result of the general atmo-
spheric circulation. Its duration varies from one to
several days and may cause a significant fall in tem-
perature. The main prediction tool for this is numerical
atmospheric mesoscale modelling. Thermal radiation
frost, which is most frequent in the Mediterranean
region, is a consequence of ground cooling at night,
usually resulting in a fall of temperature of between 3 ◦C
and 6 ◦C and is generally observed during late winter
and spring. Because of plant growth at this time, the
resulting damage can be significant, despite the fact that
such frost events last only a few hours.

There are two main ways of forecasting the thermal
radiation type of frost event. The first involves high
resolution, limited area models, but this requires
considerable computing resources in order to obtain
acceptable levels of accuracy. The second is based
on statistical methods in conjunction with local
observational networks. This prediction methodology
has been studied by a number of researchers (e.g. Veitch
1958, 1959; Parton & Logan 1981; Gandia et al. 1985;
Renquist 1985; Karlsson 2001).

In this paper, we present prediction methods for the
thermal radiation frost category. Following the work of

Gandia et al. (1985), in which an exponential model is
used for the daily prediction of minimum temperature,
we propose three different polynomial models which
are then compared with the exponential analogue of
Gandia et al. This relies on the fact that polynomial
functions are able to simulate possible alternations in the
type of temperature variation, something not possible
for exponential or any other mapping with constant
monotonicity.

Additionally, in those cases where the estimation of min-
imum temperature by means of the above-mentioned
methods is systematically biased, we employ a post-
processing method based on Kalman filters, modifying
our techniques so as to eliminate systematic errors.

The proposed methodology is easily applied since it
does not make heavy demands on computer resources
or time, nor uses large statistical datasets. As a matter
of fact, it can even be used on micro-processor systems
or simple PCs. However, it ensures a very satisfactory
quality of temperature prediction, which can be easily
adjusted to different weather types. Moreover, it is likely
to be a valuable tool in several meteorological applica-
tions such as airport/highway monitoring networks, ad-
vanced cooling/heating systems, security optimisation
against frost and ice or high temperature events.

2. Methodology

Gandia et al. (1985) used an exponential technique in
order to predict the minimum temperature, Tm, during
a fair night with low wind speeds over the area being Q1
investigated. More precisely, Tm was estimated based
on the knowledge of temperature Th, h hours starting
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from sunset and to sunrise, and that of sunset T0 by the
formula:

ln
(

Th − Tm

T0 − Tm

)
= A1 · h + A0. (1)

The constant parameters A0 and A1 were obtained
by means of a least squares adjustment using a large
database of past observations.

Despite the fact that the corresponding results presented
in their paper were very satisfactory, the above method
simulates well the night cooling only in those cases
where the temperature is decreasing continuously
(without any intermediate increment intervals). Such
variations, although being very common in nature,
cannot be represented by exponential functions due to
their constant monotonicity.

Here we propose three different ways of forecasting
night cooling in an attempt to overcome the above-
mentioned drawback, as well as a post-processing
method which improves the final output by eliminating
any possible standard error.

More precisely, we change first the logarithmic form of
(1) to a polynomial one obtaining

Th − Tm

T0 − Tm
= A0 + A1 · h + A2 · h2. (2)

Using, initially, as in the case of the exponential method,
a large database of past observations concerning Th,
Tm and T0, we estimate the coefficients Ai (i =
0, 1, 2) by means of a least square regression. In the
sequel, the obtained values for Ai are used as constantQ2
coefficients for the prediction of Tm by means of (2)
given that T0, Th are known at the time of model
activation, i.e. h hours after sunrise (T0). The exact
value of h is appropriately defined according to seasonal
characteristics and depending on the time of sunset. In
our study h is always considered equal to 3.

Note that the use of this second-order function
guarantees not only the capture of the minimum value
of temperature, but also, the simulation of any simple
inversion of it.

Taking this one step further, we may consider a
polynomial of thi rd degree

Th − Tm

T0 − Tm
= A0 + A1 · h + A2 · h2 + A3 · h3, (3)

which can also reproduce inversions of temperature
during the night, as well as a possible second minimum
value. Such variations could immerge due to temporary
changes in local meteorological conditions (e.g. rapid
wind speed increase, local cloudiness, etc.).

Finally, an even more flexible fourth-order polynomial
function is proposed and tested against the previous
models. As proved in the sequel of the paper, the Q3
capacity of fourth-order polynomials to simulate time
series with two minimal values and intermediate
intervals of temperature increment shows this method
to be the most accurate.

Using these methods we propose a different way of
estimating the minimum temperature that may simulate
not only the ‘common’ exponential temperature
decrease during the night but also possible variations
in its evolution. The main advantages and disadvantages
of the techniques presented are clarified by a detailed
comparison study.

As will be shown in the results presented in section 3, in
some cases, mainly when the second-degree polynomial
or the exponential model is used, a systematic error in
the corresponding forecasts emerges. To overcome this,
we employ a post-processing method based on Kalman
filters. Such filters have proved very effective where the
forecast of meteorological parameters is systematically
biased. For a detailed study of Kalman filters used for
meteorological purposes, see Kalman (1960), Kalman &
Bucy (1961), Persson (1991), Brockwell & Davis (1987),
Homleid (1995), and Galanis & Anadranistakis (2002).
Here, in order to make our argument self-contained, we
outline some basic notions.

If an unknown process at time t is represented by the
vector xt and at the same time a known (observation),
relevant, vector is denoted by yt, then an algorithm
estimating the change of the process x from time
t – 1 to t is given by the system equation:

xt = Ft · xt−1 + wt. (4)

The relation between the observation vector and the
unknown one is described by the observation equation:

yt = Ht · xt + vt. (5)

In both cases the coefficient matrices Ft and Ht, called
the system and observation matrix respectively, must
be determined prior to the running of the filter. The
same holds for the covariance matrices Wt and Vt of
the random vectors wt, vt respectively. The latter have
to follow the normal distribution with zero mean, must
be independent, i.e. E(ws · vt) = 0 for any s, t ∈ N,
and time independent, in the sense that E(ws · wt) =
E(vs · vt) = 0, for all s �= t. Here E stands for the mean
value factor.

In the present study, the above-described general
framework is specified as follows: If we denote by st
the direct output of the model in use and zt is the
corresponding observation, then we estimate the value
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Table 1. Basic information on the stations in use.

Station ID Placement Latitude (deg, min) Longitude (deg, min) Height (m) Data period

16622 Thessaloniki/Micra 40,31 22,58 4 1980–2001
16627 Alexandroupoli 40,51 25,55 3 1980–2001
16648 Larissa 39,38 22,25 74 1980–2001
16684 Skiros 38,54 24,33 18 1980–2001
16710 Tripoli 37,32 22,24 652 1980–2001
16716 Athens/Elliniko 37,54 23,44 15 1980–2001

of the relevant error yt = zt − st by means of a second-
order polynomial

yt = x1,t + x2,t · st + x3,t · s 2
t .

This order proved to be the optimum choice that
combines the most accurate simulation possible of the
systematic part of error and, on the other hand, does not
create ‘noisy’ results due to higher order calculations.

The unknown process xt is the vector

xt = [x1,t x2,t x3,t]

whose variation in time is given by

xt = xt−1 + wt. (6)

Here wt is the non-systematic part of the error in the
time variation of xt. The coefficient Ft is assumed to be
the unitary matrix since there is no other solid evidence
to rely on. We note that the parameter x does not
havea specific physical meaning; it is a mathematical tool
which helps to obtain a better estimation of temperature
minimum values.

The observation matrix Ht takes the form

Ht = [
1 st s 2

t
]

so the final (corrected) field scort at time t is given by

scort = st + yt = st + Ht · xt = st + [
1 st s 2

t
] ·

⎡
⎣x1,t

x2,t
x3,t

⎤
⎦

= x1,t + (x2,t + 1) · st + x3,t · s 2
t .

3. Applications, results and discussion

The first part of this study was concerned with
estimating the different coefficients involved in all
the techniques used, as described in equations (1)–(3).
The observations used in this step were provided by
the Hellenic National Meteorological Service (HNMS)
for the period 1980–2001. These stations were chosen
because they covered the full latitudinal range of Greece,
as well as different climatic regions. Some of their basic
characteristics are presented in Table 1, while their
locations are indicated in Figure 1.

Since our study focuses on night cooling due to thermal
radiation, the coefficient estimation was based on the
following criteria:

• total cloud coverage less than 3/8,
• wind speed averaging less than 3 m/sec, with a

maximum less than 5 m/sec,
• no precipitation observed.

The obtained coefficient values for each station are
presented in Tables 3–8.

In the sequel, the methods described in section 2 were Q4
used to forecast minimum temperatures for the period
2002–4 for the same stations. In particular, the choice
of the ‘appropriate’ application days was based on the
above-mentioned criteria, which had to be fulfilled at
the time of commencement of each method.

A general overview of the performance of the four
different methods is presented in Table 2. We used
the average absolute error as the evaluation parameter
because it best represents each method’s deviation.

Table 2. Average absolute error for the six stations and all the methods in use.

Station ID
average 16622 16627 16648 16684 16710 16716 Average
absolute
error summer winter summer winter summer winter summer winter summer winter summer winter summer winter

4-degree 1.08 1.46 0.97 1.12 1.18 1.09 1.25 0.99 0.95 1.08 0.76 1.00 1.03 1.12
3-degree 3.40 5.35 1.33 1.33 1.77 1.30 1.01 1.22 1.47 1.32 0.96 1.02 1.66 1.92
2-degree 1.10 1.71 3.62 4.41 4.50 6.27 1.63 2.54 4.75 6.69 2.30 3.55 2.98 4.12
exponential 1.13 1.46 0.87 1.24 1.28 2.11 1.05 1.15 1.00 2.38 0.85 2.77 1.03 1.85
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Figure 1. Location of stations in use.

Table 3. Detailed statistical results of the different methods applied to Thessaloniki station (16622).

Station 16622

model Av. Error St. dev. R A4 A3 A2 A1 A0

Summer
4-deg 0.83 1.23 0.95 0.0004 −0.0076 0.059 −0.29 1.00
3-deg 3.40 1.65 0.90 0.0011 −0.004 −0.15 0.99
2-deg 0.09 1.46 0.93 0.015 −0.23 1.01
Exp 0.02 1.49 0.92 −0.06 −0.25

Winter
4-deg 0.25 2.05 0.91 0.00003 −0.0012 0.022 −0.21 1.00
3-deg 5.35 2.96 0.78 −0.0004 0.015 −0.19 0.99
2-deg 1.52 1.81 0.92 0.006 −0.14 0.96
Exp 0.71 1.93 0.91 −0.06 −0.54

The results are divided into two main time periods:
April–October (denoted for convenience as ‘summer’)
and November–March (‘winter’). These periods are
based on the corresponding main differences in the
meteorological synoptic systems that affect the weather
fields over Greece as well as differences in day/night
duration. As the results show, there are significant
differences between the two periods.

In the first period (summer) the proposed fourth-order
polynomial procedure and the exponential one proved
to be the more accurate. This is mainly due to increased
flexibility of a higher order polynomial that better

fits the meteorological conditions prevailing during
this period, e.g. low wind speeds, relevant absence of
precipitation, clear sky – all conditions that favour
an increase in radiative cooling as well as possible
temperature function’s monotony variations. Q5

In Figures 2 and 3 two such cases are presented. These
show that only the fourth-order polynomial method
was able to simulate possible intermediate temperature
increments or variations that may affect the minimum
value. The exponential method fails to ‘see’ any of them
due to its constant monotonicity – a fact that affects its
final forecast of minimum value.
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Table 4. Detailed statistical results of the different methods applied to Alexandroupoli station (16627).

Station 16627

model Av. Error St. dev. R A4 A3 A2 A1 A0

Summer
4-deg −0.19 1.28 0.95 0.0006 −0.0126 0.090 −0.34 1.00
3-deg 1.26 0.99 0.96 0.0021 −0.017 −0.11 0.99
2-deg 3.62 1.52 0.92 0.019 −0.26 1.02
Exp 0.04 1.22 0.95 −0.02 −0.30

Winter
4-deg 0.25 1.47 0.96 0.0001 −0.0026 0.033 −0.23 1.00
3-deg −0.04 1.87 0.94 −0.0002 0.011 −0.17 0.98
2-deg 4.41 2.75 0.83 0.006 −0.14 0.97
Exp 0.33 1.70 0.94 −0.001 −0.92

Table 5. Detailed statistical results of the different methods applied to Larissa station (16648).

Station 16648

model Av. Error St. dev. R A4 A3 A2 A1 A0

Summer
4-deg 0.36 1.70 0.91 0.0004 −0.0090 0.063 −0.26 1.00
3-deg 1.67 1.58 0.91 0.0017 −0.015 −0.10 0.99
2-deg 4.50 2.34 0.79 0.014 −0.22 1.02
Exp 0.84 1.62 0.91 −0.05 −0.21

Winter
4-deg 0.26 1.44 0.96 0.00004 −0.0016 0.024 −0.20 0.99
3-deg −0.66 1.64 0.95 −0.0003 0.011 −0.17 0.99
2-deg 6.27 4.09 0.67 0.005 −0.13 0.96
Exp 2.03 1.74 0.93 −0.07 −0.42

Table 6. Detailed statistical results of the different methods applied to Skiros station (16684).

Station 16684

model Av. Error St. dev. R A4 A3 A2 A1 A0

Summer
4-deg 0.02 1.59 0.93 0.0007 −0.0146 0.110 −0.40 1.00
3-deg 0.60 1.12 0.96 0.0019 −0.010 −0.14 0.99
2-deg 1.63 0.93 0.97 0.023 −0.28 1.02
Exp 0.44 1.23 0.95 −0.06 −0.18

Winter
4-deg 0.08 1.25 0.94 0.0001 −0.0041 0.053 −0.31 0.99
3-deg −0.44 1.58 0.91 −0.0005 0.020 −0.22 0.98
2-deg 2.53 1.68 0.89 0.008 −0.15 0.93
Exp −0.31 1.50 0.91 −0.05 −0.51

In the winter period, the skill of the fourth-
order polynomial method is more obvious since
it produces better statistical results even compared
with the exponential one. Moreover, the third-degree
polynomial method shows increased accuracy during
this period on account of the fact that early morning
increments are delayed due to longer night duration,
significant temperature fall (as a result of thermal
radiation) and ground heat capacity. Consequently the
time of minimum temperature is also delayed and its
simulation is more easily fitted to the third-degree

polynomial function. In contrast, the second-order
polynomial method diverges significantly from the
observed values.

In Tables 3–8 we provide a detailed presentation of
the results of the four different methods for each
station. These results are divided into two time periods
(‘summer’ and ‘winter’) and include the following
evaluation parameters:

• average error of each method (Av. Error),
• standard deviation of Av. Error (Std. Dev.),
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Table 7. Detailed statistical results of the different methods applied to Tripoli station (16710).

Station 16710

model Av. Error St. dev. R A4 A3 A2 A1 A0

Summer
4-deg 0.12 1.23 0.97 0.0002 −0.0043 0.033 −0.22 1.00
3-deg 1.31 1.31 0.96 0.0012 −0.007 −0.13 0.99
2-deg 4.75 2.72 0.82 0.014 −0.22 1.01
Exp −0.31 1.30 0.96 −0.06 −0.22

Winter
4-deg 0.07 1.47 0.96 0.00003 −0.0011 0.018 −0.18 1.00
3-deg −0.64 1.68 0.95 −0.0002 0.010 −0.16 0.99
2-deg 6.69 4.32 0.65 0.005 −0.13 0.97
Exp 2.32 1.79 0.93 −0.07 −0.46

Table 8. Detailed statistical results of the different methods applied to Athens station (16716).

Station 16716

model Av. Error St. dev. R A4 A3 A2 A1 A0

Summer
4-deg 0.28 0.93 0.97 0.0003 −0.0048 0.041 −0.25 0.94
3-deg 0.84 0.78 0.97 0.0013 −0.003 −0.15 0.94
2-deg 2.30 1.10 0.95 0.020 −0.25 0.96
Exp −0.10 1.08 0.95 −0.04 −0.28

Winter
4-deg −0.21 1.27 0.95 0.0001 −0.0019 0.025 −0.21 1.00
3-deg −0.28 1.29 0.95 −0.0001 0.009 −0.16 0.99
2-deg 3.54 2.15 0.84 0.007 −0.15 0.98
Exp 2.77 1.77 0.89 −0.06 −0.41
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Figure 2. A characteristic time series with intermediate temperature rise during the night.

• correlation coefficient of the linear regression line
(y = Ax + B) between observations x and model
outputs y,

• regression coefficients (An, An−1, . . . , A1, A0) of
each polynomial method, resulting in a func-
tion pn(x) = Anxn + An−1xn−1 + . . . A1x + A0 (n =

4, 3, 2), and the coefficients A0, A1 of relation (Eq.
1) for the exponential method.

From this analysis, it is obvious that during ‘summer’
the fourth-degree polynomial model, having an average
error very close to zero, simulates the temperature
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Figure 3. A case with two temperature minima.
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Figure 4. Station 16648: xy-scatter diagram of minimum observed and evaluated temperature for all methods in use. We use
y = x as the regression line (yellow). Basic statistical parameters are also presented.
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Figure 5. Station 16710: xy-scatter diagram of minimum observed and evaluated temperature for all methods in use. We use
y = x as the regression line (yellow). Basic statistical parameters are also presented.

T1

decrease with almost no systematic error. However,
taking into account all the available evaluation
indices, we may conclude that the exponential method
also surpasses the other two and especially the
second-order polynomial, whose performance is rather
poor.

The same conclusions hold for the ‘winter’ period
too, but with higher quality results for the fourth-
order technique and increased noise in the second
order, mainly due to the longer night duration,
as well as the significant temperature decrease
and ground heat capacity. These all relate to the
delay in the time when the minimum temperature
occurs.

The above results are further outlined in the x – y scat-
ters of Figures 4 and 5 for the three different cases.
The correlation of the results with the regression line
(y = x), as well as the corresponding statistical results
relating to average error and its absolute value, again

confirm the dominance of the fourth-order polynomial
method in all these test cases.

Going one step further, for those cases where systematic
errors emerged, we applied the post processing method
based on Kalman filters described in section 2. The
corresponding results for the test cases mentioned above

T2are presented in the time series shown in Figures 7–12.

The improvement of the final forecast after using
the proposed post-processing method is impressive,
especially for these time periods where a standard type
of divergence occurs. This is also shown in Tables 9–
11 where some characteristic statistical parameters
are presented. The success of the Kalman filter is
guaranteed by the elimination of average error in each
case studied. In all these cases the final results are
comparable to those of the fourth-degree polynomial
method. The use of any post-processing method of
this type on the latter is meaningless due to the small
average bias of its results.
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Figure 6. Station 16648: Observations against second-order approach and Kalman filter.
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Figure 7. Station 16710: Observations against second-order approach and Kalman filter.

Table 9. Comparison of fourth-degree polynomial, exponential
and Kalman filtered exponential models for 16710 station.

Station 16710 Av. Error Av. Abs. Error Stand. Dev.

4-deg 0.09 1.05 1.41
Exp + Kalman −0.23 1.43 1.80
Exp 1.80 2.10 2.00

Table 10. Comparison of fourth-degree polynomial,
second-degree and Kalman filtered second-degree models for
16710 station.

Station 16710 Av. Error Av. Abs. Error Stand. Dev.

4-deg 0.09 1.05 1.41
2-deg + Kalman −0.60 2.98 3.71
2-deg 6.26 6.26 4.11
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Figure 8. Station 16710: Observations against exponential approach and Kalman filter.

Table 11. Comparison of fourth-degree polynomial,
second-degree and Kalman filtered second-degree models for
16648 station.

Station 16648 Av. Error Av. Abs. Error Stand. Dev.

4-deg 0.29 1.12 1.52
2-deg + Kalman −0.20 2.61 3.27
2-deg 5.74 5.74 3.75

4. Conclusions

Four different methods of predicting minimum tem-
perature were presented and applied to a number of
locations covering a wide latitudinal range across Greece
as well as different climatological conditions. We used
three polynomial-based methods (of second, third and
fourth degree) as well as an exponential one. The
corresponding results were verified against observations
provided by the Hellenic National Meteorological
Service’s stations in two different seasons: ‘summer’
(April–October) and ‘winter’ (November–March). The
main conclusions are as follows:

• During ‘summer’, the fourth-order polynomial
method as well as the exponential one gave more
accurate results.

• During ‘winter’, the prevalence of the fourth-order
polynomial is further sustained since it is the only
one able to simulate alternations of temperature
variation during night as well as a possible fall after
sunrise.

• The second-degree method gave low quality
forecasts in all cases, especially during the ‘winter’
period.

• The post-processing Kalman filter method, applied
operationally in those cases where systematic
divergences from the observed values emerged, led
to significant improvement of the final results, which
were comparable to those obtained by the (optimal)
fourth-degree polynomial.

The use of the methodology presented here makes
possible not only an accurate prediction of minimum
temperature but also the time when the this occurs,
thus providing a very valuable tool for the prediction
and mitigation of frost events, requiring only minimal
computing resources.
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