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Abstract— Accurate forecasting of wind farms power produc-
tion up to two days ahead is recognized as a major contribution 
for reliable large-scale wind power integration. Especially, in a 
liberalized electricity market, prediction tools enhance the posi-
tion of wind energy compared to other forms of dispatchable gen-
eration. As wind integration increases, the requirements for wind 
power forecasting diversify depending on the end-user and the 
context. In the frame of the EU project Anemos multidisciplinary 
research has been carried out in wind forecasting by a number of 
research organizations and end-users with wide experience in the 
field. Advanced statistical, physical and combined modeling ap-
proaches were developed including methods for on-line uncer-
tainty and prediction risk assessment. An integrated software 
platform was developed to host the various models. It was in-
stalled by several end-users for on-line operation and evaluation 
at a local, regional and national scale. This paper presents the 
research methodology and the major results obtained.

Index Terms—Short-term wind power forecasting, uncer-
tainty, numerical weather predictions, online software, wind inte-
gration.  

I. INTRODUCTION

n 1997 the European Commission adopted the White Paper 
on renewable energies. It sets out a Community Strategy and 

an Action Plan to double the share of Renewable Energies 
Sources (RES) in gross domestic energy consumption in the 
European Union from the present 6% to 12% by 2010. Under 
this target, the problem of integration of RES and particularly 
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of wind energy in the actual energy framework is of tremen-
dous importance. 

Wind energy is one of the RES with the lowest cost of elec-
tricity production and with the largest resource available. 
Wind power technologies are now mature enough to represent 
a major contribution. The projections of the European Wind 
Energy Association EWEA, for installed wind capacity in the 
EU 15 by 2010 and 2020 are 75 GW and 180 GW respec-
tively.

The large-scale integration of wind power in any type of 
power system, interconnected or autonomous (i.e. islands), 
imposes a number of difficulties on power system operation. 
This is due to the fluctuating nature of wind generation that 
operators need to balance, for example, by allocation of spin-
ning reserve. The requirement for a secure and reliable opera-
tion of the power system acts as a limiting factor for wind 
penetration. 

Experience from countries currently possessing considerable 
wind integration shows that advanced tools are necessary to 
assist end-users such as utilities, independent power producers, 
or transmission system operators to the management of wind 
generation. Accurate and reliable forecasting systems of the 
wind production are widely recognized as a major contribution 
for increasing wind penetration.

Moreover, European utilities are currently witnessing re-
structuring in the landscape of electricity generation, transmis-
sion and distribution. The evolution towards deregulation is 
supported by appropriate legislative and financial frameworks 
that permit new players to enter the electricity market. How-
ever, for the case of wind energy, the variability of the re-
source limits the competitiveness of wind production com-
pared to dispatchable conventional electricity. The availability 
of accurate predictions of wind production few hours into the 
future permits a reduction in penalties in a spot market coming 
from over- or underestimations of the production. As a conse-
quence, the economic attractiveness and acceptability of wind 
power is increased. 

In this general context, the R&D project ANEMOS was 
launched in October 2002 by pioneer research institutes in the 
field and end-users, in order to carry out wide-ranging research 
and develop advanced solutions for onshore and offshore 
short-term wind power forecasting.  

The prediction  tools  developed  within  ANEMOS  are ex-
pected to contribute to an optimal,  from  the  technical and 
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economic point of view, integration of wind power in inter-
connected and islands systems. The assessment of wind pre-
dictability and uncertainty in this project permits to further 
define appropriate storage systems or reserve requirements to 
operate in parallel to wind farms, or appropriate management 
strategies, to balance the intermittence of wind resource.  

Nowadays, several tools [1] have been developed for wind 
power forecasting (i.e. Prediktor, Previento, WPPT, More-
Care, Sipreolico, AWPPS, and others), some of them by the 
partners of this project. They focus on onshore applications 
and are based either on physical (detailed terrain representa-
tion, roughness etc.) or statistical modeling (i.e. black- or grey-
box models based only on data). Physical modeling benefits 
from advances in the area of wind resource assessment. The
aim here is to advance towards both statistic and physical 
modeling, but also to examine in detail combination of the two 
approaches, which is generally expected to outperform  the 
individual  cases.

A wind power forecasting tool is composed of  several  
modules (downscaling, power curve modeling, model output 
statistics, etc), each one expected to have a good performance, 
in order to achieve an acceptable overall accuracy. The soft-
ware requirements become more complex when the aim is to 
predict wind power at a regional or even a national level. The 
project developed research over a wide spectrum of functions, 
which are implemented in the form of modules and integrated 
in a software platform, called ANEMOS, able to operate on-
line. 

In order to be applicable in a broad range of applications, 
the ANEMOS platform was developed following a thorough 
specification and pre-standardization procedure by industrial 
partners. The architecture of the forecasting system is modular 
in order to permit parallel operation of alternative models and 
combination of their predictions for a high reliability and an 
optimal global accuracy.. This can be a major requirement in 
cases of large geographical concentration of wind power such 
as is often the case in offshore wind parks. 

II. THE ANEMOS APPROACH

The project is structured into nine work-packages, which 
address the following technical objectives:

• Data collection & evaluation of needs.
• Off-line evaluation of prediction techniques.
• Development of statistical models.
• Development of physical models.
• Offshore prediction.
• ANEMOS prediction platform development. 
• Installation of the platform for on-line operation.
• Evaluation of on-line operation.
• Overall assessment and dissemination.

The following paragraphs present an overview of the vari-
ous developments.

A. Detailed evaluation of needs of end-users and state-of-the 
art review.

At a first stage of this work several audits with various play-
ers such as utilities, transmission or distribution system opera-
tors, independent power producers, regulatory authorities a.o., 
took place, with the aid of appropriate questionnaires, in order 
to evaluate requirements related to wind power prediction. 
Emphasis was given on the experience (confidence, level of 
use, etc.) end-users have with existing forecasting tools. The 
results were synthesized to an “end-users requirements” report 
that consists a basic guideline for the developments in the pro-
ject. 

In addition, a detailed survey of the literature on wind 
power forecasting was performed with the review of more than 
120 references [1].

B. Benchmarking of wind power forecasting models.

Initially, a detailed evaluation of a number of base-line fore-
casting systems (and some versions of them) was performed 
[4] including: 

• AWPPS (Ecole des Mines/Armines).
• LocalPred (CENER, CIEMAT)
• Prediktor (RISOE)
• Previento (Univ. Oldenburg, EMSYS)
• Sipreolico (UC3M/REE)
• WPPT (DTU/IMM)
• Prediction model of NTUA
• Prediction model of RAL
• Prediction model of ARIA.
These models were tuned on real data from a number of 

case studies in Spain, Germany, Denmark (including an off-
shore one), Ireland, France and Greece. The case studies were 
selected to represent different terrain  types and climatic con-
ditions. The consideration of the above base-line models per-
mitted identification of the advantages and the limitations of 
each approach, and the areas for improvement. A clearly-
defined benchmarking framework was developed for  this 
evaluation focusing on different time scales (e.g. short-term up 
to 6 hours or longer term, up to 48 hours), on different criteria 
etc [2]. File exchanges were performed through a secured web 
site. Appropriate error measures were selected for the evalua-
tion of the methods with emphasis to their performance in ex-
treme weather conditions as well as their robustness in on-line 
environment. Experience shows that common measures, such
as Root Mean Square Error, are not sensitive enough to prop-
erly indicate the prediction quality. The different modeling 
approaches were evaluated in a virtual laboratory (see Fig. 1).

Fig. 2 shows a representative result of this comparison. The 
normalized mean absolute error (NMAE – normalization with 
wind farms nominal capacity) is depicted for 6 wind farms as a 
function of the terrain complexity. This latter is expressed by 
the RIX index [3], which reflects the slope of the terrain 
around the wind farm.  
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Fig. 1. Design of the virtual laboratory set-up for the models benchmarking.
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Each value in Fig. 2 is the average of the NMAE perform-
ance obtained by the 11 models. The figure illustrates well 
how the performance is a function of the terrain. It gives also 
the level of predictability for single wind farm prediction. It is 
noted that predictability is better when wind production is pre-
dicted on a regional basis as a result of the spatial smoothing 
effect from the geographical distribution of the wind farms [6].

Fig. 3 shows a comparison of the performance of the various 
physical and statistical models on a test case in Spain (SOT) as 
a function of the prediction horizon. 

Part of the uncertainty in the wind power predictions comes 
from the error in Numerical Weather Predictions (NWP). In 
parallel to the evaluation of the prediction models, forecasts 
generated by different meteorological systems (Hirlam, Skiron, 
Aladin, etc) were compared for the case of two wind farms 
corresponding to different climatic conditions – example in 
Fig. 4. This is an original part of the work that provides much 
insight on the role of NWPs in wind power forecasting [4], [5]. 

C. Short-term forecasting using advanced physical modeling.

In this work focus was given to challenging situations like 
prediction of wind farm output at complex terrain sites. A pos-
sible solution to that problem comes in the form of high-
resolution, advanced numerical flow models trying to improve 
on the NWP models shortcomings [7]. 

These models can be linear flow models like Risø’s WAsP, 
or AriaWind, meso-scale models like the well-known MM5 
community model, MeteoFrance’s MesoNH or IASA’s RAMS 
model, or full-blown CFD models (Computational Fluid Dy-
namics) like Fluent or Mercure. 

The idea of all models is the same: use higher resolution 
calculation and input data bases plus a more complete physics 
descriptions than the NWP model to try to capture the local air 
flows, be it in the mountains or at a land-sea border – see Fig.
6, Fig. 7. Whereas NWP models typically have a horizontal 
resolution of 5-10 km, the meso-scale models employed here 
can go down to 500 m. 

The new approaches were tested at three sites: Alaiz, a 
complex terrain site in northern Spain, Ersa-Rogliano, a two-
cluster wind farm on the narrow tip of Corsica, and four wind 
farms at the eastern end of Crete. 

For MM5, several Planetary Boundary Layer parameteriza-
tions were tried out, and it was found that the Blackadar 
scheme did not perform as wellas the MRF or ETA PBL 
schemes. The last degree of horizontal resolution might not be 
necessary, the same accuracy can be gained with a larger finest 
nested area. A higher number of vertical levels in the lowest 
100m above the surface helps. MM5 could improve on the 
simple HIRLAM forecasts in Alaiz. The accuracy of the MM5 
forecasts seems to depend a lot on the accuracy of the driving 
model (NCEP 6-hourly or GFS hourly). 

KAMM could explain the turning effects of the wind (see 
Fig. 5) for the Spanish test case. A domain size of 400 km x
400 km was needed. However, a MOS system (where data is 
available) might do as well [7].
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For RAMS in Corsica and Crete, the second model level 
(46m a.g.l.) performed usually better than the 10 m wind. Us-
ing 500 m horizontal resolution helped here (probably due to 
the much better orography description used in comparison to 
MM5). 

Fig. 5. The wind speed enhancement and turning effect of the topography are 
dependent on the wind speed, profile and stability configurations. These 
effects are displayed in the above diagrams showing the mesoscale effect on 
the geostrophic wind forcings.
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In general, the models revealed the problem of representa-

tivity of a single measurement for a whole region. We are 
comparing model output valid for an area with a measurement 
in one particular point. Another issue which has to be solved 
on a case by case basis is whether the computational effort 
required is justified.

D. Advanced statistical modeling and uncertainty assess-
ment.

A first topic of research in statistical modeling was to de-
velop approaches for post-processing NWPs in order to reduce 
systematic errors. For example, a new way of encapsulating 
non-linear dynamics in the Kalman filter was developed and 
applied to improve NWPs data and in particular wind speed
[14]. This permitted to reduce up to 20% the error  of power 
predictions as shown in Fig. 8. 
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Fig. 8. Improvement on the performance of power predictions by using the 
Kalman approach to filter NWPs.

A large number of methods have been investigated for the 
prediction of power production or local meteorological vari-
ables including neural networks, fuzzy logic, Kalman filtering, 
support vector machines, radial basis functions, combined
forecasting, a.o (i.e. [14]-[16]). These techniques permit com-
bination of various types of explanatory input variables like 
wind direction, wind speed from neighbor sites, numerical 
weather predictions etc.

A topic of research was power curve modeling where ap-
proaches based on neural networks, fuzzy logic and local re-
gression were evaluated. Such models aim to describe the rela-
tionship between local power production and local meteoro-
logical measurements or forecasts - Fig. 9. Experience so far 
shows that one of the main error sources in wind power predic-
tion lies in insufficient power curve modeling. The use of cer-
tified power curves does not guarantee that the relation be-
tween wind speed and power output is in practice accurately 
described. 

Work on statistical downscaling aimed at developing mod-
els describing the dependency between meteorological fore-
casts from nodes surrounding a location (the global wind field) 
and local observations. Statistical downscaling can here be 
seen as an alternative technique to explicit terrain and rough-
ness modeling.

Emphasis was given to developing upscaling approaches for 
predicting regional/national wind power production from a 
sample of wind farms for which power predictions are avail-
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able. The cases of Jutland/Funen in Denmark and EWE in 
northern Germany, each in the order of 2200 MW and in Ire-
land, were used for evaluation [6]. The results show that, due 
to the smoothing effect, forecast accuracy is higher for re-
gional forecasting than for individual wind farm forecasting. 
The average error for 24 hours ahead for Jutland is 6.2%.

Fig. 9. A two dimensional power curve model based on fuzzy-logic approach 
for the Alaiz wind farm in Spain (very complex terrain) [17].

A priority theme of the project concerned uncertainty. Ini-
tially, a characterization of prediction errors was performed 
[6]. Methods for assessing the situation-specific uncertainty in 
the power predictions have been developed able to provide 
prediction intervals for pre-selected confidence levels – see 
[6], [8]-[10]. Furthermore, prediction risk methods were de-
veloped to use information in ensemble meteorological fore-
casts for assessing the expected level of  uncertainty in wind 
power predictions. This information can be particularly useful  
for  the  decision-making processes related to wind power 
management or trading. The risk indices are a complementary 
tool to prediction intervals. It is a means to "forecast" the level 
of uncertainty – see Fig. 12. I.e. when a high value of the risk 
index is provided for the next day, the operators may adapt 
their strategies by taking preventive actions like higher spin-
ning reserves.

E. Short-term forecasting of offshore wind farms production

Although much experience exists for onshore wind farms 
modeling and prediction, this not the case for offshore [19]. 
Here emphasis was given to  high-resolution marine meteoro-
logical forecasts and the analysis of different meteorological 
conditions offshore. The sea surface roughness is very low, 
and the thermal stratification of the atmosphere, i.e. the ther-
mal stability of the wind flow, is for long periods very differ-
ent from the near neutral case observed onshore. 

Additionally, the low roughness increases the influence of 
stability on the wind speed profile. The project investigated the 
most important parameters which influence the wind speed 
profile offshore. Pure numerical meteorological forecasts were 
compared with measured time series from several sites. 

power [% of Pn]

predictive distribution 
for horizon t0+35h

Fig. 11. Example of forecasts for the next 48 hours compared to measured 
values. Prediction intervals for various levels of confidence are displayed. 
Intervals are estimated with the adapted resampling approach. 

NPRI [%]

Low predictability situationEasily predictable situation

NPRI = 7

ri
sk

E
rr

o
r

le
v
el

in
d
e
x

fo
r

D
A
Y
+

1
[%

]

Fig. 12. Translation of weather predictability to power predictability for next 
day using the Normalized Prediction Risk index (NPRI). Bottom-left: the 
alternative predictions for the next day are very similar resulting in a high 
degree of confidence. Bottom-right: the alternative predictions differ signifi-
cantly – this lowers the confidence in the future weather predictability. Each 
situation is represented by a value of the risk index. Though the upper dia-
gram this can be translated to an error level of the power predictions (100% 
corresponds to the average error level of the model).  

A new air-sea-interaction model for calculating marine wind 
speed profiles was developed, i.e. the theory of inertially cou-
pled wind profiles (ICWP). The model is based on inertial 
coupling of the wave-field to a wave boundary layer with con-
stant shear stress which is matched to the Ekman layer of the 
atmosphere. Evaluation with Horns Rev (Fig. 13) and FINO1 
data [11] showed good agreement, especially regarding wind 
shears.
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Next, emphasis was given to modeling spatio-temporal 
characteristics in large offshore farms [20]. New approaches 
were developed to model wakes behind such farms. Wake 
losses are anticipated to be at least 5-10% of power output. 
Wind speed recovery can be predicted to occur between 2 and 
15 km downwind of such farms according to the model type 
chosen. A new whole wind farm model was developed 
(Storpark) based on conserving momentum deficits. Also, 
comparison of mesoscale model results with WAsP predictions 
was performed to quantify gradients of wind speed over large 
wind farms. These gradient corrections were compared with 
corrections needed for vertical wind speed profiles and for 
wake losses in order to identify which have the largest impact 
on power output on a case by case basis.

A new module for FLaP, which is the wake-model from 
Oldenburg University, was developed. The underlying Ainslie-
model is based on eddy viscosity closure of the Reynolds 
equations with a boundary layer approximation and leads to a 
modified Gaussian distribution of speed losses. The turbulence 
intensity profile in the wake is now modeled with the Magnus-
son-formula, which improves the calculation of added turbu-
lence.

Fig. 13. Mean measured “open sea” sector (135°-360°) wind profile at Horns 
Rev compared to mean of ICWPs and average offshore WAsP profile. Period 
10/2001-04/2002.
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Fig.  14. Evaluation of wake effect in a large offshore wind farm. Total wakes 
power loss is ~10% but individual wake losses are much larger.

A study was performed on the regional forecast for a total 
capacity of 25 GW in the German Bight, which showed a Root 
Mean Square Error (RMSE) of 9-17, credited to spatial 

smoothing effects that reduce the error by a factor of 0.73 
compared to a single site [22]. Hence, a combined regional 
forecast for all offshore sites would show an RMSE of 12% at 
36 hour forecast time, i.e. an absolute RMSE of 3 GW. It was 
then of interest to estimate the respective spatial error smooth-
ing for the sum of onshore and offshore wind farms in Ger-
many. An aggregated forecast for a situation with 25 GW in-
stalled offshore capacity and 25 GW onshore for the year 2004 
was calculated. The sum of the offshore wind power time se-
ries calculated from the weather analysis and the real German 
onshore wind power production time series from 2004 that was 
scaled from 17 GW to 25GW was used as reference. The re-
sulting RMSE ranges from 5% to 10% (Fig. 15), i.e. the area 
size of 800 km leads to an error reduction

In a dedicated task, the potential contribution of satellite 
data in offshore prediction was studied. 

Finally, various physical (i.e. MM5) and statistical (i.e. neu-
ral networks) models were calibrated on power data from two 
offshore wind farms: Tunoe and Middelgrunden in Denmark.
Performance was comparable to onshore results.

Fig. 15. RMSE of ECMWF wind power forecasts. Thin lines: all single 22 
sites. Red triangles: Average of single sites. Pink stars: Aggregated 25 GW 
offshore forecast. Green circles: Aggregated 50 GW on-&offshore forecast.

F. The ANEMOS forecasting platform.  

Today wind power prediction is an operational, commercial 
task which must fit into the requirements of ambitious custom-
ers like utilities, TSOs and operators of large wind farms. Al-
though being operationally feasible, many approaches for 
power forecasting originated from research environment. 

In the framework of the ANEMOS project, a professional, 
flexible platform was developed for operating wind power 
prediction models, laying the main focus on state-of-the-art IT 
techniques, inter-platform operability, availability and safety 
of operation. Currently, several plug-in prediction models from 
all over Europe are able to work on this platform. They cover a 
wide range of end-user requirements such as short-term predic-
tion (0-6 hours) by statistical approaches, medium term predic-
tion (0-48/72 hours) by statistical and physical approaches, 
combined approaches, regional/national forecasting through 
upscaling techniques, on-line uncertainty estimation, probabil-
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istic forecasts, risk assessment, multiple numerical weather 
predictions as input and others. The flexibility of the platform 
permits simple settings for single wind farm prediction up to 
more complex ones corresponding to large wind power capaci-
ties. It can run in a remote mode by the ANEMOS Consortium 
as a prediction service or be installed to run as a stand alone 
application. 

Fig. 16. General architecture of the ANEMOS prediction platform.
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Fig. 17. Ergonomic, graphical users interfaces were developed to visualize 
predictions and operate the system.

Fig. 18. A wide range of on-line applications is planned for detailed evalua-
tion and optimal exploitation of the results.

All interfaces, data formats and data base structures are 
well-defined and well-documented. For the actual prediction 
models, different ways of data retrieval and sending are avail-
able, starting with simple but standardized file exchange up to 
web service interfaces. Following this approach, the integra-
tion of different models was made easy and effective for the 
modelers.

Also, for safe operation, an option for operation on multiple 
servers was implemented. By this way, it is possible to operate 
two or more servers at different physical locations for the same 
prediction tasks, with independent power suppliers and net-
work infrastructures. These servers will automatically take 
over the tasks of data retrieval, production and delivery from 
one another if any problem occurs at one place. With this ap-
proach, we achieved a 100% availability of the prediction ser-
vice in the last 18 months.

The advantages of this platform approach for wind power 
prediction customers are quite obvious: safe operation, high 
availability, easy integration in its own IT structures and ac-
cess to a variety of forecasting models with only one starting 
infrastructure investment and a single user interface [12].

The platform is installed in 7 countries for online operation 
by 8 end-users including TSOs, utilities and wind farm devel-
opers. The actual installations cover applications like onshore 
and offshore parks, island power systems and regional/national 
forecasting - Fig. 18.

G. Evaluation results

In each of the above-mentioned installations, a number of 
wind power prediction models are activated. For some cases
NWPs by alternative meteorological models are considered as 
input. The accuracy of the various models during on-line op-
eration is then evaluated. Examples are shown in Fig. 14 for 
the cases of Alaiz wind farm in Spain (which is probably the 
site with the most complex terrain in the project) and Guerle-
dan wind farm in France. The figures show the performance of 
various simple and advanced models that use either Hirlam, 
Skiron or Aladin NWPs as input. The optimal models have in 
fact better performance than the one found using historical 
data at the offline benchmarking process reported in [5]. 

Apart from their accuracy, it is of interest to evaluate the 
value of wind power forecasts for end-users. The influence of 
forecasts on aspects such as system stability, definition of 
penetration limits, pollution prevention (i.e. due to fuel saving) 
are addressed. Fig. 21 shows the reduction achieved in GHG 
emissions from using advanced wind power forecasting for the 
power system of Crete in Greece. 

Finally, it was evaluated the correlation between prediction 
uncertainty and electricity prices and how to develop optimal 
strategies for wind power participation in electricity market. 
An example is shown in Fig. 22 , which shows the revenues of 
a wind farm resulting from its participation in an electricity 
market. Revenue 100% corresponds to perfect forecasting 
where no penalties apply for imbalances. The simple method 
of persistence gives the lower bound. Bidding strategies based
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Fig. 20. Evaluation of the on-line operation of several prediction models for the Alaiz  wind farm in Spain. (left figure) 
and Guerledan wind farm in France (right figure).
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Fig. 21. Study on the power system of Crete. Estimation of monthly cost 
reduction due to improvement in the wind forecasts accuracy. A 6-10% 
reduction is achieved also in GHG emissions (SO2, NOX, CO2) by the use of 
an advanced forecasting tool that permits to avoid excessive reserves 
allocation.
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Fig. 22. Evaluation of the revenues obtained from the participation of a wind 
farm in an electricity market. 

on the uncertainty information allow the benefits compared to 
the case where only spot predictions are used to be increased.

III. CONCLUSIONS

An advanced technology for wind power forecasting, appli-
cable on a large scale: at a single wind farm, regional or na-
tional level and for both interconnected and island systems, 
was presented in this paper. For detailed information on the 
results of the project, a list of selected references is given at 
the end of the paper.

A next generation forecasting software, ANEMOS, has been 
developed to integrate a variety of modules covering a wide 
range of requirements for wind prediction and uncertainty es-
timation. The platform is able to operate both in stand alone or 
remote mode, or be interfaced with standard Energy Manage-
ment Systems. The software was installed for on-line operation 
at a number of onshore and offshore wind farms. The benefits 
are evaluated during on-line operation, while guidelines will 
be produced for the optimal use of wind prediction systems. 

After running four years of the project, it is worth mention-
ing that the large size of the consortium has been extremely 
beneficial. It permitted to establish a high degree of synergy

between experts from various fields. It led to achievements 
that would have been very difficult for single partners or 
smaller groupings to realize. It permitted an accurate 'mapping' 
of the wind forecasting technology useful for developing grid 
and market regulations. Moreover, having together end-users 
with different perspectives regarding wind prediction, resulted 
in a clear view regarding requirements and priorities. Last but 
not least, it permitted  data base of valuable information (i.e. 
measurements) for extensive validations of the modeling work 
to be created. The project has globally contributed to improv-
ing forecasting technology as shown below:

Prior to the project Project contributions

Deterministic forecasting
Towards probabilistic forecast-
ing

The classic model chain

Extension by inclusion of new 
solutions (combined models, 
multiple NWPs, ensemble pre-
dictions)

Accuracy oriented models
Accuracy + robustness + value 
oriented models

Research prediction tools
Standardized, pre-industrial 
tools.



ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ� 9

As wind penetration increases, end-user requirements diver-
sify and become more and more complex. Even throughout the 
current project new priorities emerged (i.e. uncertainty estima-
tion, upscaling) revealing the necessity of research to meet 
requirements. In the future it will be necessary to continue 
research in the field; go back to the basics, develop further 
synergy with meteorology, work on the "value" of wind fore-
casting. In particular, the "value" relates to the integration of 
predictions and their uncertainty in management functions and 
decision making processes related to wind power. This will be 
one of the objectives of the follow-up project ANEMOS.plus 
[27].

The output of this research is expected to facilitate wind 
power integration at two levels. First, at an operational level, 
since it will allow better management of wind farms and more 
efficient participation of wind production in the electricity 
markets. Second, it is expected to contribute in promoting an 
increase in the installed capacity of wind farms; an accurate 
power prediction capability reduces the risk to wind farm de-
velopers, who are then more willing to undertake new wind 
farm installations, especially in a liberalized electricity market 
environment.
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