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Abstract  

This paper studies the application of Kalman filtering as a post-processing method 

in numerical predictions of wind speed. Two limited-area atmospheric models have been 

employed, with different options/capabilities of horizontal resolution, to provide wind 

speed forecasts. The application of Kalman filter to these data leads to the elimination of 

any possible systematic errors, even in the lower resolution cases, contributing further to 

the significant reduction of the required CPU time. The potential of this method in wind 

power applications is also exploited. In particular, in the case of wind power prediction, 

the results obtained showed a remarkable improvement in the model forecasting skill.  

 

Keywords: wind speed forecasting; Kalman filtering; wind power forecasting 

 

*Corresponding author. Tel.: +33(0)4.93.95.75.01; fax:+33(0)4.93.95.75.35. 

E-mail address: georges.kariniotakis@ensmp.fr (G. Kariniotakis) 



 3 

1. Introduction 

Limited Area Models (LAMs) are widely applied for providing weather forecasts 

up to three days with their forecast skill ranging between 80-90%. The current 

requirements for long-term as well as accurate predictions have forced meteorologists to 

broaden the ability of Numerical Weather Prediction (NWP) models supplying reliable 

forecasts maintaining their skill for periods longer than three days. 

It is well known that NWP models usually exhibit systematic errors in the 

forecasts of certain meteorological parameters, such as wind speed, especially near the 

surface. This drawback is a result not only of the shortcoming in the physical 

parameterization, but also of the inability of these models to successfully handle sub-grid 

phenomena. The model horizontal resolution associated with smoothing/averaging the 

orographic and landscape characteristics leads to weak representation of local effects on 

the airflow. For example, winds induced by the orography of a region are usually 

underestimated systematically.  

A way of counteracting such a drawback is to increase the model resolution that 

may provide considerable improvement in the representation of smaller scale flow 

characteristics. Nevertheless, an open question remains as to whether the use of higher 

resolution LAMs improves the forecast skill considerably. Even in the case that this is 

true, it is still uncertain whether such improvement compensates the usage of 

computationally costly resources that are required for these applications (Mass et al., 

2002).  

An alternative way to reduce the limitation of the NWP models to accurately 

predict sub-grid phenomena is the use of post-processing approaches based on statistical 

methods. One of the most successful methods in this issue is the use of Kalman filters 
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(Kalman, 1960; Kalman and Bucy, 1961; Persson, 1991; Dragulanescu, 1993; Galanis 

and Anadranistakis 2002; Crochet, 2004; Kalnay, 2002). They consist of a set of 

mathematical equations that provides an efficient computational solution of the least 

square method with minor computational cost and easy adaptation to any alteration of the 

observations.  

The aim of this paper is, on the one hand, to investigate the rate of improvement 

in wind speed predictions with the application of Kalman filtering and to study the effect 

of such a post processing method on different horizontal resolution outputs. For this 

reason, an optimal polynomial Kalman filter is employed to two NWP models with 

different characteristics and horizontal resolution, and a detailed statistical analysis is 

performed. The discussion is focused on the capability of the filter to improve the direct 

model outputs even in cases of lower resolution taking also into account the requirements 

in CPU time.  

On the other hand, the filtered wind speed predictions are used as input in wind 

power prediction models and the improvement in the final wind power forecasts is 

examined. Such forecasts are recognized today as useful tools for the management of 

power systems where wind penetration is important. 

 

2. The modelling systems 

In this Section a general description of the models used is provided.  

 

2.1. The SKIRON modelling system 

The SKIRON modelling system (e.g. Kallos, 1997; Papadopoulos et al., 2001) 

runs operationally at the University of Athens providing 5-day weather forecasts 
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(http://forecast.mg.uoa.gr). It has been developed at the University of Athens by the 

Atmospheric Modelling and Weather Forecasting Group (AM&WFG), based on the 

Eta/NCEP model (Janjic, 1994) and consists of various modules for pre- and post-

processing together with a version of the Eta model appropriately coded in order to run 

on any parallel computer platform. SKIRON is a full physics non-hydrostatic model with 

sophisticated convective, turbulence and surface energy budget schemes. It is appropriate 

for regional/mesoscale simulations in regions with varying physiographic characteristics. 

The fact that it is a non-hydrostatic modelling system makes it computationally robust at 

all resolutions and efficient in NWP applications.  

SKIRON uses NCEP/GFS initial meteorological data for operational purposes at a 

resolution of 1º, and SST data at a resolution of 0.5º. Vegetation and topography data are 

applied at a resolution of 30'' and soil texture data at a resolution of 2'. The domain of the 

model covers the entire Mediterranean region with a horizontal increment of 0.1ºx0.1º 

(Figure 1).  

SKIRON has been successfully applied to a large number of different regions and 

for long forecasting periods (e.g. Papadopoulos et al., 2001; Papadopoulos et al., 2002; 

Katsafados, 2003). However, local adaptation problems emerge, especially for near 

surface parameters, leading to systematic errors that cannot be confronted by the model 

itself. In particular, the wind speed prediction, being strongly dependent on local airflow 

characteristics, is one of the most commonly biased parameters closely related to the 

resolution of the model. In this paper, a way out of these problems is proposed based on 

the use of Kalman filter as a post processing method with low computational cost.  
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2.2. The RAMS model.  

The Regional Atmospheric Modelling System (RAMS v4.3.0) is a highly versatile 

numerical code, developed at Colorado State University and Mission Research 

Inc/ASTeR Division. RAMS runs operationally by the Atmospheric Modelling and 

Weather Forecasting Group providing 48-hour forecasts over Greece and has been 

employed in a number of different applications (Kallos and Lagouvardos, 1997; 

Lagouvardos et al., 1996; Lagouvardos et al., 1997; Mavromatidis and Kallos, 2002). It is 

considered as an advanced modelling system being the merger of a non-hydrostatic cloud 

model and a hydrostatic mesoscale model. It has been developed in order to simulate 

atmospheric phenomena with resolution ranging from tens of kilometres to a few meters 

with the capability of using two-way interactive nesting of any number of grids. 

Furthermore, it uses various levels of complexity turbulence scheme.  

RAMS is well suited for parallelization since it does not use physical/numerical 

routines that are global. A general description of the model and its capacities is given in 

Cotton et al. (2003) focussing on the new developments in the RAMS physics and 

computational algorithms since 1992. 

In this paper RAMS wind speed data of various grid resolutions have been 

filtered, using the developed Kalman filtering technique, in order to investigate the 

improvement achieved to the different resolution grid data in association with the CPU 

time required.  

 

2.3. The wind power prediction model 

Adaptive Fuzzy-Neural Networks (F-NN) are applied here for wind power 

prediction (Kariniotakis and Mayer 2002, Kariniotakis and Pinson 2003). The core F-NN 
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model is generic and can be trained on appropriate input depending on the final use, 

which can be either very short-term (few seconds to a few minutes) or short-term 

prediction. For short-term horizons up to 120 hours ahead, it is necessary to include 

numerical weather forecasts as explanatory input to the model in order to have an 

acceptable performance. 

The fuzzy model can be expressed in the form of rules of the type: 

"IF  x  is  A  THEN  y  is  B"   (1) 

where x, y are linguistic variables and A, B are fuzzy sets. In the case of time-series 

prediction, rules may have the form: 

( )nnn xxgyAxAxR ,,   THEN     is   and , and ,  is     IF     : 111 …… =  (2) 

where: 

x1,…,xn   are real-valued variables representing input variables of the system 

defined in the universes of discourse X1,…,Xn respectively,  

A1,…,An  are fuzzy sets represented by membership functions ( )jA xjµ , 

y is the variable of the consequent part of the rule whose value is inferred. In the 

specific problem it represents future wind power ( )( )…),2(ˆ,1ˆ ++ tPtP , 

g(.)  is a function that implies the value of y when x1,…,xn satisfy the premise.  

The function g(.) in the consequent part of the rules may be linear, non-linear or constant. 

In the case of a linear function, the fuzzy rule-base takes the form: 
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where i
jp are the weights of the linear function gi(.). 
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Each rule gives an estimation of the output yi
  according to the conditions defined 

by the fuzzy sets in the premises. In the context of time-series prediction, each variable xj 

in the premise corresponds to a past value of the process (i.e. power: P(t), P(t-1)…), or 

past values of explanatory input (i.e. wind speed: WS(t), WS(t-1)…) or meteorological 

forecasts (i.e. wind speed WS(t+1), WS(t+2), …).  

A linear function in the consequence is indeed an ARX (autoregressive with 

exogenous variables) model. It is clear that with the above definitions, the rule-base 

consists of an ensemble of “local” models. Local modelling is a desired property of the 

model, especially in the case of a non-stationary process such as wind generation.  

Fuzzy sets in the premises are modelled here using Gaussian functions. In the case 

of a linear function in the consequence, the F-NN model may be written analytically as: 
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where: i
jAµ  is the membership function of xj to the fuzzy set 

i
jA . 

3. The Kalman filtering methodology 

Kalman filters (Kalman, 1960; Kalman and Bucy, 1961; Kalnay, 2002; Persson, 

1991; Dragulanescu, 1993; Galanis and Anadranistakis 2002; Crochet, 2004) are the 

statistically optimal sequential estimation procedure for dynamic systems. Observations 

are recursively combined with recent forecasts with weights that minimize the 

corresponding biases.  

The main advantage of this methodology is the easy adaptation to any alteration 

of the observations as well as the fact that it needs short series of background 
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information. A short description of the algorithmic procedure of a classical Kalman filter 

is given here. 

The main goal is the simulation of an unknown process xt, t denoting the discrete 

time step. The change of x in time is described by the System Equation  

xt = Ft·xt-1 + wt (4) 

On the other hand, a known array yt is also used. It is connected with the 

unknown process by the Observation Equation :   

yt = Ht·xt + vt  (5) 

The coefficient matrices Ft and Ht have to be determined before the application of 

the filter. The same holds also for the covariance matrices Wt, Vt of the Gaussian and 

independent random vectors wt and vt.  

The Kalman filter gives a method for the recursive estimation of the unknown 

state xt based on observation values y up to time t. A first estimate of xt and Pt based on 

the previous time step values is given by: 

xt/t-1 = Ft·xt-1 ,        Pt/t-1 = Ft·Pt-1·Ft
T + Wt . (6) 

As soon as the new observation value yt is known, the estimate of x at time t 

becomes:  

xt = xt/t-1 + Kt⋅⋅⋅⋅(yt-Ht⋅⋅⋅⋅xt/t-1) , (7) 

where  

Kt = Pt/t-1·Ht
T·(Ht·Pt/t-1·Ht

T+Vt)-1 (8) 

is the Kalman gain. Kt arranges how easily the filter adjusts to possible new conditions.  

The final estimate of Pt is  

Pt = (I-Kt·Ht)·Pt/t-1. (9) 

Equations (6)-(9) update the Kalman algorithm from time t-1 to t.  
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Our approach is based on the application of non linear Kalman filters. In 

particular, it focuses on the study of a single meteorological parameter in time, based on 

the estimation of the bias of this parameter as a function of the forecasting model direct 

output. Specifically, if we denote by mt the direct output of the NWP model at time t and 

by yt the bias of this forecast, we realize yt by means of mt as a 3-rd order polynomial:  

ttttttttt vmxmxmxxy +⋅+⋅+⋅+= 3
,3

2
,2,1,0  (10) 

where the coefficients (xi,t) are the parameters that have to be estimated by the filter and 

vt the Gaussian non systematic error in the previous procedure.  

In this way, the state vector is the one formed by the coefficients (xi,t): 

[ ]T
tttt xxxx ,3,2,1,0=tx  and the observation procedure is the scalar bias yt. On the 

other hand, the observation matrix takes the form [ ]321 ttt mmm=tH  while as 

system matrix we use the identity. As a result, the system and observation equations, (4) 

and (5) correspondingly become, respectively:  

tttt1tt vxywxx +⋅=+= − tH,   (11) 

It is worth noting that instead of the 3-rd order polynomial of relation (10), one 

may employ a function of arbitrary order. However, a plain – 1-st order form – leads, in 

most of the cases, to difficulties in the simulation of non linear procedures, as the wind 

speed evolution, while higher order polynomials result to increased “noise” due to 

instabilities with no essential contribution in filters accuracy, and hence model output 

improvement. A detailed study for the determination of the optimum order for a filter 

polynomial has been investigated in Galanis et al. (2006) where the 3-rd order proved to 

have the best contribution in the elimination of the systematic part of the bias with less 

need in CPU time.  
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The variance matrices Wt, of the system equation, and Vt, of the observation 

equation, are estimated based on the sample of the last 7 values of wt=xt-xt-1 and vt=yt-xt, 

respectively:  

6
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1
0

( )
1 ((( ) ( ))) ,
6 7

− − −
=

− − −
=

−
≡ ⋅ − −

∑
∑
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t t i t i t i
i

y H x
V y H x  (13) 

The later are objective estimators of Wt, Vt respectively since the variables wt and 

vt denoting the non-systematic part of errors in equations (11), follow the normal 

distribution by assumption. This time period of 7 days was proven to be the optimal 

choice in our study in order to achieve successful corrections and fast adaptability 

simultaneously (Galanis et al., 2006). However it is possible to vary under different 

geographic or climatological environments. 

 

4. The case study 

SKIRON NWP data of a time period statistically long for wind power purposes, 

i.e. one year, have been provided in the framework of E.U. ANEMOS project 

(http://anemos.cma.fr). In particular, SKIRON forecasts for wind speed and direction, air 

temperature and mean sea level pressure have been supplied for different locations in the 

Mediterranean Region where wind farms are operated. For the specific case study, 

SKIRON wind speed at 10 m above the ground for the area of Rokas in Crete, Greece 

(Lon: 26.2º, Lat: 35.2º, 480m above ground) for the whole year 2003 were available. At 
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the same time observations of wind speed at 40 m and power from the wind farm 

installed at the site were provided within the framework of the project. 

On the other hand, RAMS run in a hindcasting mode for a selected period of 2 

days, namely 4 to 6 September 2003. Although, this period is short due to CPU time 

limitations, it is, nevertheless, indicative of the potential benefits that may be gained by 

the application of Kalman filtering in various resolution domains/cases. Five two-way 

nested grids were used with the outer one to cover the whole Mediterranean Region with 

48km horizontal resolution; the next grid of 12 km resolution included the whole Greece; 

the third grid of 6 km resolution contained Crete; the fourth grid of 1.5 km resolution 

included the east part of Crete, while the smallest grid included the edge of the east part 

of Crete with 0.5 km resolution where the Rokas wind farm is located (c.f. Figure 2). The 

model was initiated at 12UTC using ECMWF gridded analysis meteorological fields. The 

modelled horizontal wind was extracted at the location of Rokas for the nested grids of 

12 km, 6 km, 1.5 and 0.5 km. In this way the effect of the grid resolution on the predicted 

wind was investigated.  

 

5. Results 

The results presented here are based on detailed statistical analysis of SKIRON 

and RAMS outputs, the Kalman filtered outcomes and the wind power prediction product 

presented as an application.  

The statistical analysis was based on the calculation of the:  

 Bias of direct model output in comparison with the corresponding bias of the 

improved, by the Kalman filter, forecasts:  
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( )
1

1 ( ) ( )
k

i
Bias for i obs i

k =

= ⋅ −∑  

where obs(i) denotes the observed value at time i, for(i) the corresponding forecasted 

value (direct model output or filtered forecast), and k is the size of our sample. 

Bias is a crucial parameter for Kalman filtering since any type of Kalman method 

aims at considerably reducing the corresponding biases. The success on this issue is the 

main criterion ensuring the credibility of the filter.  

 Absolute bias, assessing the “real” improvement in the model predictions despite 

possible changes in the type of errors:  

1

1 ( ) ( )
k

i
Absolute Bias for i obs i

k =

= ⋅ −∑  

where |  | denotes the absolute value. 

 Standard deviation of the bias and of the absolute bias that estimates the 

variability of the results: 

( )( )2

1

1. .  ( ) ( )
k

i
St Dev of Bias for i obs i Bias

k =

= ⋅ − −∑ . 

 Root Mean Square Error assessing the error in the predicted values: 

( )∑
=

−=
k

i
iobsifor

k
RMSE

1

2)()(1 . 

 

5.1. Kalman filtering application to SKIRON wind speed 

The Kalman filter with polynomial of 3-rd order was applied to all wind speed 

SKIRON data of Rokas wind farm for different forecasting periods, i.e. 24, 48, 72, 96 

and 120 hours, for the whole year 2003.  
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Table 1 includes the bias, absolute bias and standard deviation of bias of the 

model direct output and the Kalman filtered outcome for each forecasting period. It is 

clear that SKIRON underestimates the wind speed in all forecasting periods. In all cases 

the application of Kalman filtering improves the model output reducing the bias 

considerably to approach zero suggesting that the main goal of the filter is fulfilled. 

Moreover, the significant reduction of all three statistical quantities for the Kalman 

filtered results ensures that the discrepancy between the two time series (observed and 

forecasted) has been decreased despite any possible changes in the type of error 

(underestimation or overestimation). Hence, the filtered model output approximates the 

observations considerably.  

Figures 3 to 5 illustrate the variation of bias, absolute bias and standard deviation 

of bias of the direct model output and the Kalman filtered wind speed with the 

forecasting period. Apart from the obvious improvement in the initial forecast, it is worth 

noticing that this positive influence remains invariant with the forecast time for the bias. 

The time series illustrated in Figure 6 further support the significant improvement 

in the model output after the application of Kalman filtering to wind speed predictions. It 

is clear that the systematic error emerged is eliminated regardless of its type.  

In the framework of ANEMOS project, the developed Kalman filtering technique 

was successfully applied also to SKIRON wind speed numerical predictions for other 

wind farms in Spain and Corsica with similar improvements in the direct model outputs.  

 

5.2. Kalman filtering application to RAMS wind speed  

RAMS wind speed data of various grid resolutions have been filtered using the 

developed Kalman technique in order to investigate the improvement achieved to the 



 15 

different resolution grid data in association with the CPU time required. Figure 7 shows 

time series of the predicted horizontal wind and the corresponding Kalman filtered for 

four of the domains, i.e., those with horizontal resolution of 12 km, 6 km, 1.5km and 0.5 

km. It is shown that RAMS follows the evolution in time of the measurements fairly well 

with the wind resulting from the 0.5 km grid resolution being closest to the observations 

than the results of all other grids. An underestimation of the predictions is observed for 

winds stronger than approximately 20 to 25 m/s dependent of the grid resolution, with the 

highest resolution grid being able to capture some of the local peaks observed. The main 

underestimation is obtained during 00UTC and 15UTC on 5/9/2003, when the highest 

winds were measured. Figure 7 suggests that regional and mesoscale features of the 

airflow are captured satisfactorily by the coarser grids (12km and 6km), while the small 

scale features (e.g. topography induced) are better described by the finest grids (1.5km 

and 0.5km). However, the benefits gained beyond 6km resolution are not always worth 

the computational expenses. 

The use of the developed Kalman filtering technique investigated the 

improvement that may be achieved when applied to the modelled wind extracted by each 

domain. It is shown (Figure 7) that the proposed technique improves the predicted wind 

speed in all cases. This result is further supported by the values of Bias and RMSE (c.f. 

Table 2) that were considerably diminished after Kalman filtering implementation for all 

domains, while the mean wind speed was increased approaching the observed value. 

The importance of this application lies on the fact that the filtered wind extracted 

from the 12 km resolution grid obtains better statistics than the direct modelled wind of 

0.5 km grid. Moreover, the proposed method offers improved wind predictions in 

significantly reduced CPU time. Specifically, while the requirements in CPU time for a 
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48-hour run with RAMS using 5 two-way nested grids was approximately 48 hours, the 

required corresponding time for the same run with just 2 two-way nested grids (48 km 

and 12 km) was 1.7 hours plus a few minutes for the  Kalman filter application. 

 

5.3. Results for wind-power prediction 

This section provides an example of the use of Kalman filtered NWP data to wind 

power applications. The F-NN model was used to predict the power production of Rokas 

wind farm using as input the SKIRON and alternatively Kalman filtered SKIRON NWPs 

for different forecasting periods, i.e. 24, 48, 72, 96 and 120 hours for the year 2003. The 

F-NN model needs a training set to “learn” how to predict. In the following study, the 

first 3850 observations of the year 2003 were used for training; the remaining 

observations were used to evaluate the performance of the model. Statistical analysis of 

the errors was performed based on the calculation of the: 

 Normalized Mean Absolute Error (NMAE). This criterion gives equal weight to 

all errors and is easy to interpret in practice since it is directly related to the quantity 

of power not predicted.  

∑
=

+−+=
N

tinst
thtPhtP

NP
hNMAE

1
)(ˆ)(1)(  

where )( htP +  is the power measured at time t+h, )(ˆ thtP +  is the forecast of 

)( htP +  computed at time t, N the number of computed forecasts, and | | denotes the 

absolute value. 

 Normalized Root Mean Square Error (NRMSE), gives more weight to larger 

errors thus providing information on the relative size of the large errors. 
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( )∑
=

+−+=
N

iinst
thtPhtPNP

hNRMSE
1

2
)(ˆ)(11)(  

where Pinst denotes the installed capacity for which the forecasts are computed. 

 Bias of fuzzy model output using raw and filtered SKIRON wind speed forecasts. 

In Figure 8 the NMAE and NRMS are presented for all horizons and both sets of 

data. For the 24 and 48 hour-ahead horizons the performance obtained with the SKIRON 

data is comparable to that obtained with other NWP models on other wind farms 

(Kariniotakis, G., et al. 2004). The performance decrease and the error values for the 

longer-term forecasts remain acceptable. When using the Kalman data, the performance 

increase is evident; the improvement with respect to the SKIRON data is in the order of 

22% of the NMAE for the 48 to 120 hours-ahead horizons. 

The bias correction witnessed with the NWP data directly translates to a 

correction of the bias of the wind power forecasts. In Figure 9 the biases of the wind 

power forecasts using the raw and filtered SKIRON NWP are shown. The wind power 

forecast biases are similar to that of the NWP biases. 

As the Kalman filtering contributes to the reduction of the bias in the wind speed 

prediction input, investigating the distribution of the power prediction errors is necessary. 

In figures 10 and 11 the error distributions for the 48 and 96 hours-ahead horizons are 

presented. The histograms clearly show the reduction of the bias. They are more 

symmetrical for the corrected NWP than for the raw NWP. Further, the filtered data lead 

to a sharper distribution of the errors. As a result, the forecasts obtained with the filtered 

data present a lower uncertainty. This can be illustrated by analysing the number of 

forecast errors inferior to a certain error margin. In Figure 12 the number of forecasts 

between +/–5 %, +-15% and +/-30% error margins are given for the power forecasts 
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obtained from the filtered and raw NWP for each forecasting period. For example, for 24 

hours ahead, 32% of the errors are between +/-5% of the nominal power of the farm for 

the raw SKIRON data, whereas for the filtered data, 38% of the errors are in the same 

error margin for the same horizon. From this figure it is clear that the filtering reduces the 

error for all error bins. However, the most important benefit seems to be for the smaller 

errors (+/- 5% and +/- 15%). The reduction of larger error (+/-30% and above) is quite 

limited. 

The overall improvement in wind power forecast accuracy is clearly illustrated in 

Figure 13, where the measured power is plotted along with the forecasts computed using 

the raw and filtered SKIRON forecasts. 

 

6. Conclusions 

A new technique based on the implementation of non-linear polynomial functions 

(3-rd order) in Kalman filter algorithms was applied to wind speed numerical predictions 

obtained at a particular wind farm in Crete, Greece. This method was applied to the 

outputs of two atmospheric numerical models with different capabilities in horizontal 

resolution. The methodology showed high performance for all cases leading to the 

elimination of any type of systematic errors. In particular, all error parameters used were 

significantly reduced, the forecast skill was maintained for all forecasting periods and 

most importantly it reduced the requirements in CPU time since its application to lower 

resolution data led to similar or even more accurate results compared to the costly high 

resolution direct model outputs.  

Beyond the traditional meteorological use this technique finds a wide range of 

applications in the engineering sector. In this case, it was used for providing improved 
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input to a wind power prediction model. It was shown that the Kalman filtered wind data 

ameliorated the ability of power forecasting models to provide useful predictions for very 

long horizons. All the performance criteria were improved significantly for all predictions 

horizons.  

Therefore, this work suggests that the use of very expensive computational 

facilities to perform high-resolution (< 6 km) applications for wind energy predictions 

may be avoided by the combined use of moderate NWP model resolution and an adaptive 

statistical technique such as Kalman filtering; providing similar or even more accurate 

predictions at wind farm scale. 

In an operational setting, this can greatly benefit unit commitment, economic 

dispatch and electricity market biding strategies as well as allowing better maintenance 

scheduling. Such improvements can greatly ease wind power integration into 

conventional power systems thus favouring an increase in the use of wind as a renewable 

energy source. 

The credibility of the proposed method, gives the opportunity for further use and 

applications. In this way, it can be implemented in the main forecast model activated in 

each time step of integration, smoothing, in this way, any possible temporary 

discontinuity that a rapid change in the time series could produce. It can be also used as a 

pre-processing assimilation method for the correction of the initial conditions in a 

numerical prediction model.  
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Figure Captions 

Figure 1: The orography of the domain that the non-hydrostatic SKIRON 

modelling system currently uses 

Figure 2: The five two-way nested grids used for the RAMS application for the 

case of Crete wind farms  

Figure 3: Variation of wind speed bias with forecast time for the direct model 

output and after the application of Kalman filter, for the year 2003 

Figure 4: Variation of wind speed Absolute Bias with forecast time for the direct 

model output and after the application of Kalman filter, for the year 2003 

Figure 5: Variation of wind speed Standard Deviation of Bias with forecast time 

for the direct model output and after the application of Kalman filter, for the year 2003 

Figure 6: Time series of the wind speed observed, forecasted (24-hour forecasts) 

and Kalman filtered 

Figure 7: Time series of the wind speed observed, modelled with RAMS and 

Kalman filtered for the grids with 12km, 6km, 1.5km and 0.5km horizontal resolution 

Figure 8: Comparison of NMAE and RMS values of the wind power forecasts 

using SKIRON and filtered SKIRON data. 

Figure 9: Variation of wind power bias with forecast time for the wind power 

forecasts using SKIRON and filtered SKIRON data. 

Figure 10: Error distribution of wind power forecasts for the 48 hour-ahead 

horizon using SKIRON and filtered SKIRON data. 

Figure 11: Error distribution of wind power forecasts for the 96 hour-ahead 

horizon using SKIRON and filtered SKIRON data. 
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Figure 12: Number of power forecast errors between +/-5 %, +/- 15 %, +/- 30 % 

of nominal power obtained using raw SKIRON and filtered SKIRON data. 

Figure 13: Time series of the observed wind power and wind power forecasts 

using raw SKIRON and filtered SKIRON NWP data (in percentage of the wind farm 

nominal capacity). 
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Table 1: Bias, Average Bias and Standard deviation of Bias for the direct model 

output and the Kalman filtered 

Wind Speed 

Forecast 
period 

Model 
Bias 

Kalman 
Bias 

Model 
Abs. Bias 

Kalman 
Abs. Bias 

Model 
Std. Dev. Bias 

Kalman 
Std. Dev. Bias 

T+24 h -2.11 -0.13 2.79 1.75 2.78 2.38 

T+48 h -2.23 -0.08 3.12 1.86 3.17 2.58 

T+72 h -2.34 -0.14 3.45 2.00 3.58 2.81 

T+96 h -2.72 -0.03 3.99 2.23 4.12 3.20 

T+120 h -2.99 -0.07 4.32 2.35 4.51 3.43 

Average -2.48 -0.09 3.53 2.04 3.63 2.88 
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Table 2: Bias, RMSE and the corresponding mean value for the direct RAMS 

output and the Kalman filtered for the grids with 12km, 6km, 1.5km and 0.5km 

horizontal resolution 

 Model Kalman 
Resolution 12 km 6 km 1.5 km 0.5 km 12 km 6 km 1.5 km 0.5 km 

Bias -2.67 -0.65 -1.89 -1.67 -0.02 0.40 0.35 0.03 

RMSE 4.07 3.54 3.50 3.36 2.37 2.65 2.22 2.25 

Mean 17.43 19.45 18.21 18.43 20.08 20.50 20.45 20.13 
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